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ABSTRACT

In this dissertation, we mainly reincarnated the Semantic Web Service Choreog-

raphy that had been abandoned for a decade in spite of its interesting utility, especially

in today’s dominant web service-based applications. We took the original Abstract

State Machine-based (ASM) choreography execution algorithm of Web Service Mod-

eling Ontology (WSMO), determined its weaknesses and improved it so that it can

be used effectively in the context of semantic web services. We then implemented a

completely new choreography engine based on our improved algorithm.

Our work has been done in two phases. First, we concentrated on the “capability”

component of WSMO and used Frame Logic (F-Logic) to specify it. The new model

allows very short but expressive descriptions of both goals and web service capabilities,

which are then used by a matching engine to discover which web services can satisfy a

given goal. The matching engine, using the meta-level F-logic inferencing capabilities

of the underlying Flora-2 reasoner, is very efficient and has a very concise definition

itself.

In the second phase, we again used F-Logic for specifying ASM-based model-

ing of interactions between a requester of service and provider of service, also called

choreography, of semantic web services described in conformance to WSMO. Our

choreography execution engine, implemented in Flora-2, remains loyal to the paral-

lelism and branching paradigms of ASMs (unlike previous implementations), and is

based on our improved choreography execution algorithm, which has the following

novelties over the original algorithm: (i) it introduces the concept of initial state in the

execution of ASM and links it to the precondition of the goal, (ii) it introduces the
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concept of a final state in the execution of ASM and links it to the post-condition of the

goal, (iii) it modifies the execution of ASM so that it stops when the final state condi-

tions are satisfied by the current configuration of the machine, as opposed to stopping

only when the machine has no more moves.

As part of our work, we also developed a visual tool for specifying web service

choreographies in Flora-2, provided a mapping between JSON and Flora-2 Web Ser-

vice specification, and lastly defined a formal mapping between traditional ASMs and

ontological ASMs that are the basis of choreography specifications and proved their

equivalence, which was missing in the literature before.

Keywords: Semantic web, web services, service matching, service choreography, ab-

stract state machine, Flora-2, F-logic, web reasoning
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ÖZ

Bu tez çalışmasında, özellikle bugünün baskın web hizmeti tabanlı uygulamalar-

ında ilginç yararına rağmen, on yıl boyunca terk edilmiş Semantik Web Hizmeti Ko-

reografisini yeniden canlandırdık. Web Service Modeling Ontology’nin (WSMO) ori-

jinal Abstract State Machine tabanlı (ASM) koreografi yürütme algoritmasını aldık,

zayıf yönlerini belirledik ve semantik web hizmetleri bağlamında etkin bir şekilde kul-

lanılabilecek şekilde geliştirdik. Ardından, geliştirilmiş algoritmamızı temel alarak

tamamen yeni bir koreografi motoru hazırladık.

Çalışmalarımız iki aşamalı olarak gerçekleştirildi. İlk olarak, WSMO’nun "yete-

nek" bileşenine yoğunlaştık ve onu belirtmek için Çerçeve Mantığı (F-Logic) kul-

landık. Yeni model, hem hedeflerin hem de web hizmet yeteneklerinin çok kısa an-

cak somut tanımlamalarına izin verir; bunlar da eşleşme motoru tarafından hangi web

hizmetlerinin belirli hangi hedefle uyumlu olduğunu keşfetmek için kullanılır. Altta

yatan Flora-2 mantığının meta düzeyinde F-Logic çıkarım yeteneklerini kullanan eşleşme

motoru çok verimli ve çok özlü bir tanımlamaya sahiptir.

İkinci aşamada, yine F-Logic’i, WSMO’ya uygun olarak tanımlanan seman-

tik web servislerinin, koreografi olarak da adlandırılan, hizmet talep eden ve hizmet

sağlayıcısı arasındaki etkileşimlerin ASM tabanlı modellemesini belirtmek için tekrar

kullandık. Flora-2’de uygulanan koreografi yürütme motorumuz ASM’lerin paralel-

lik ve dallanma paradigmalarına (önceki uygulamalardan farklı olarak) sadık kalmak-

tadır ve orjinal algoritma üzerinde aşağıdaki yenilikleri içeren geliştirilmiş koreografi

yürütme algoritmamızı temel almaktadır: (i) ASM’nin yürütülmesinde nihai bir du-

rum kavramını getirir ve hedefin son durumuna bağlar; (ii) ASM’nin uygulanmasında
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başlangıç hali kavramını getirir ve onu hedefin ön koşuluna bağlar; (iii) sadece makine

daha fazla hareket olmadığında durdurulması yerine, makinenin geçerli konfigürasy-

onu ile nihai durum koşulları yerine getirildiğinde ASM’nin çalışmasını durdurur.

Çalışmamızın bir parçası olarak, ayni zamanda Flora-2’de web hizmeti Kore-

ografilerini belirlemek için görsel bir araç geliştirdik, JSON ve Flora-2 Web Hizmeti

spesifikasyonu arasında bir eşleme yaptık ve son olarak daha önce literatürde eksik olan

geleneksel ASM’ler ve ontolojik ASM’ler arasındaki formel bir haritalama tanımladık

ve eşdeğerliklerini ispatladık.

Anahtar Kelimeler: Semantik web, web servisler, servis eşleştirme, servis koreografi,

Soyut durum makinesi, Flora-2, F-Logic, webde mantik yürütme
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Chapter 1

INTRODUCTION

In Service-Oriented Architecture (SOA), Web Services are defined, registered,

invoked, and interconnected via some pre-agreed specifications [4]. As a result of

emerging SOA applications in industry and B2B communication sectors, two major

challenges have gained more attention. The first one is about how to find proper Web

Services for a specific business; and the second one is about how to make the found

Web Services cooperate together to make the specific business goal.

The first challenge is addressed by the concept known as Service Discovery; that

is the process of finding one or more appropriate Web Service(s) among a possibly

large pool of diverse Web Services. Service Matching is the main part of Service

Discovery process. The non-intelligent way is to manually refer to Web Service repos-

itories and use traditional text retrieval techniques to find some candidates for the spec-

ified application. On the other hand it can be done (semi) automatically by applying

certain AI techniques such as logical inference. The latter approach requires the avail-

ability of rich semantic description of Web Service capabilities, user requirements and

other related aspects of Web Services (such as non-functional properties), commonly

in the form of logical statements in some appropriate form of logic, and in this case

discovery amounts to proving certain logical inferences.

The second challenge is addressed by the concept known as Service Composition;

that is the process of combining Web Services in a way that they use their outcomes in
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a specific order which provides the specified goal. Choreography and orchestration are

two complementary aspects of service composition. Choreography models the behav-

ioral interface of a Web Service, and is used to realize (semi) automatic communication

between the Web Service and its user. W3C defines choreography in this way: "Web

Services Choreography concerns the interactions of services with their users. Any user

of a Web service, automated or otherwise, is a client of that service. These users may,

in turn, be other Web Services, applications or human beings. Transactions among

Web Services and their clients must clearly be well defined at the time of their execu-

tion, and may consist of multiple separate interactions whose composition constitutes a

complete transaction. This composition, its message protocols, interfaces, sequencing,

and associated logic, is considered to be a choreography"[9]. Orchestration models the

way of coordination among two or more Web Services in order to achieve a common

goal [4][77]. W3C defines orchestration in this way: "Web service invokes other Web

services in order to realize some useful function. I.e., an orchestration is the pattern of

interactions that a Web service agent must follow in order to achieve its goal"[9].

An example scenario for describing choreography is the reservation process of

an airline ticket. The actual scenario between a human and a web site providing flight

reservation service can be as follows:

1. At the beginning, the user is usually able to set six items:

• departure city/airport

• arrival city/airport

• whether the trip is roundtrip or one-way

• departure date

• return date
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• the number of passengers

2. The website offers some candidate flight numbers and their details, including

date, time, airport, and price.

3. The user has to choose one of the candidates.

4. The online ticket reservation site asks for passenger data, such as the full name,

gender, and date of birth.

5. The system asks for credit card information, including the holder’s name, credit-

card number and its CVV code

6. The online ticket service queries the bank to validate the card.

7. Upon approval of the bank, the flight reservation service completes the transac-

tion and issues a ticket to the user.

Similar to Service Matching, to automate Web Service choreography, the need

for unambiguous, machine processable semantics is obvious.

A well-known semantic Web Service framework is the Web Service Modeling

Ontology (WSMO) [26] – a meta-ontology for describing relevant aspects of Seman-

tic Web Services that facilitates its logical description. In WSMO, Web Services and

service requests are described using a rich semantic notation so that the meaning of

either becomes understandable, both to man and machine. User requests are framed in

the form of goals, common vocabulary is defined in the form of ontologies, and bridg-

ing the heterogeneities among Web Services and goals are resolved through mediation.

Several languages of varying expressive power, such as WSML-Rule, WSML-Flight,

and WSML-Full [10][55] have been proposed to specify Web Services according to

WSMO, all based on Frame Logic (F-Logic) [60][58]. Both Service Matching and

Service Composition are addressed by WSMO with its Capability and Interface com-
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ponents respectively.

In spite of its comprehensive definitions and elegant service composition idea,

WSMO has not been embraced by industry and no publicly available, fully working

product has been made based on it. We found that the first barrier is the language used

to describe WSMO-based Web Services, i.e. WSML. It is too verbose to be applied in

practice. The second barrier is about its choreography component. Although WSMO

choreography is built upon the well-founded theory of Abstract State Machines (ASM)

[54][49][25], our investigations into the current, ASM-based algorithm advocated for

being used in WSMO choreography [12][83][84] have revealed certain shortcomings

of the algorithm, which make it unsuitable for matching the choreography requirements

of the client and Web Service, or driving the interaction between the client and Web

Service. Specifically, the current algorithm makes no connection between the pre and

post conditions of the requester, and allows the execution of ASM to continue, even

when the requester may be satisfied by the current state. Furthermore, the algorithm

uses the paradigm of evolving ontologies where objects and relations on objects are

evolving, whereas in the original ASM formalism, it was functions and relations that

were evolving, and the mapping between the two formalisms has never been given. In

this work, our goal has been to change this state of affairs by providing solutions to the

mentioned problems.

Firstly, we use Flora-21 as a specification language for semantic description of

Web Service components according to WSMO and implement a matching engine based

on inference in F-logic in order to discover Web Services that can satisfy user requests

specified in the form of goals. Our semantic specification is very concise since it makes

1F-logic Translator version 2 or Flora-2 by Michael Kifer et al. [56][20] is a powerful language for
knowledge representation and reasoning. It is based on F-logic, HiLog [29][28], and Transactional logic
[24].
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use of the underlying Flora-2 syntax to the highest degree possible. The implementa-

tion of the matcher is also very compact since it makes effective use of the meta-level

capabilities of the Flora-2 system.

Secondly, we use Flora-2 for adapting the definition and execution of abstract

state machines to semantic Web Service choreography. We define a precise mapping

from traditional ASMs to the version used in specifying choreographies. We modify

the proposed ASM execution algorithm so that it takes into account the pre-post con-

ditions of the requester, making it stop when the requester can be satisfied. We use a

sub-language of F-logic as implemented in Flora-2 to semantically describe Web Ser-

vice and goal (requester) choreographies, as well as functionalities, and implement a

choreography engine in Flora-2 that realizes our algorithm. We thus not only propose

a formalism for ASM-based choreography, but also demonstrate its viability though an

actual implementation.

Outcomes of the above mentioned research have been published in the form of

two articles. The service matching solution has been published in Lecture Notes in

Electrical Engineering, by Springer [22] and the choreography solution has been pub-

lished in the Scientific Programming journal, by Hindawi [71].

The rest of this dissertation is structured as follows. In Chapter 2, we briefly

explain the preliminaries, including short introductions to ASM theory, F-logic, Flora-

2, and WSMO capability and choreography (as part of WSMO interface component)

concepts, which are needed to understand the subsequent sections. Chapter 3 contains

related work on choreography specification, matching and execution, with appropri-

ate comparison with our approach along with the problem definition. In Chapter 4,

we describe the semantic specification of goals and Web Services in WSMO, as well
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as the logic we have used in the implementation of our service matching engine. We

demonstrate the power and practicality of our service matching scheme through a sim-

ple but realistic appointment system scenario and show how our solution fulfills all the

requirements needed to specify and discover Web Services/goals. Chapter 5 is dedi-

cated to our choreography scheme and its implementation details. We give the existing

WSMO choreography execution algorithm, point out its weaknesses, and present a rec-

tified version. We prove the equivalence of ASMs (also known as evolving algebras

[47]) and WSMO choreography specifications (commonly called evolving ontologies

[44]) by providing appropriate mappings between them. Moreover, we see how our

choice of Flora-2 as the specification language helps resolve the data granularity mis-

match problem [13][70] that can occur between the goal and Web Service. The general

form of goal and Web Service specifications in F-logic is given, as well as the imple-

mentation details of the improved algorithm, which works on the specifications. We

provide three choreography scenario examples, demonstrating the capabilities of the

proposed choreography specification and engine. We also prove the equivalence of

ASM and choreography engine that was previously missing in the literature, and at the

end of this chapter we highlight the major differences between our semantic choreog-

raphy solution and the other available ones. In Chapter 6, we do benchmarking our

choreography solution, and demonstrate that it is scalable; and finally in Chapter 7 we

present the conclusion and future work in the area of semantic Web Service discovery

and choreography based on our semantic Web Service specification approach.

In Appendix A, we illustrate the developed visual editor for semantic Web Ser-

vice specification as a subset of Flora-2. In Appendix B, we give the grammar of the

Web Service and goal choreography specifications in EBNF [1] notation. In Appendix
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C we describe a scheme for converting JSON [15] content into its Flora-2 equivalent,

a step that will be useful in grounding Flora-2 specified semantic Web Services into

RESTful Web Services [79]. Appendix D contains a description of the predicates used

in the implementation, which itself is available for download at [19]. In Appendix E

the source codes of the choreography engine written in Flora-2 are given. More chore-

ography specification examples are provided in Appendix F. Lastly, in Appendix G,

the source codes of the choreography specification generator (written in C#), which is

used in the benchmarking process, is given.

7



Chapter 2

PRELIMINARIES

In this chapter we briefly review the main concepts which are necessary to know

to understand the consequent chapters.

2.1 WSMO and WSMO choreography

Web Service Modeling Ontology (WSMO) is a comprehensive framework that

has the aim of enabling automatic service discovery, invocation, and composition [26].

It identifies four major concepts in semantic service oriented architecture: ontology

(provides the common terminology between goals and web services), web service

(models the functionality of the web service at a high, semantic level), goal (models

the request of client at a high, semantic level), and mediator (resolves different types

of possible incompatibilities, including process and terminological, between goals and

web services).

The concept of Web Service in turn contains nonfunctional properties, ontolo-

gies, mediators, capability, and interface elements. The functionality of a WSMO

Web Service is described by the capability element which contains precondition, post-

condition, assumption, and effect. Precondition specifies what the web service requires

from the goal before it can start execution. Post-condition specifies what the web ser-

vice can provide to the client (i.e. goal) upon successful completion of its execution.

Assumption is the state of the world which must hold true before the web service can

be called. Effect is the change(s) caused to the state of the world through the execution
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of the web service. A WSMO Web Service guarantees its post-condition and effect if

its pre-condition and assumption are true. This feature of WSMO Web Services is used

for automatic discovery purposes.

Choreography is part of Web Service Interface element which specifies the be-

havioral interaction of the web service with its client.

2.2 Flora-2 and F-Logic

Introduced by M. Kifer and G. Lausen, Frame Logic [60] or in short F-logic is a

formalism that integrates first-order logic and the object-oriented paradigm. Equipped

with predicate calculus [3], F-logic can easily model concepts, facts, rules, and spe-

cially ontologies in a very declarative fashion and is considered a rule-integrated onto-

logical language [58]. In F-logic, classes and subclasses are modeled as concepts and

sub-concepts respectively. Also, data members are represented by attributes and their

assigned values. Detailed discussion about F-logic can be found in [60][61][76].

Flora-2 is a powerful, integrated system based on F-logic, HiLog [29] [29], and

Transaction Logic [24]. It offers syntax similar to F-logic and by using the XSB in-

ferencing engine [14], it can do reasoning on the facts and knowledge represented in

F-logic or HiLog. The variety and multiplicity of logic and predicate operators makes

Flora-2 a powerful reasoning system. Moreover, Flora-2 is being continuously ex-

tended and developed [56][17] and it can be integrated with Java through the provided

APIs [18]. We use the latest version of Flora-2 [20] to implement a new Semantic Web

Service choreography engine.

Flora-2 keeps knowledge in logical storage places named modules. By default,

all the information and knowledge is stored in the main module. The user can create

an arbitrary number of independent modules for organizing knowledge (referred to as
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user-defined modules).

Flora-2 also has built-in modules which contain predefined predicates, such as

the \prolog module where useful Prolog [75] utility predicates are kept.

In Table 2.1, some of the more prominent constructs of Flora-2 syntax, which we

use in the choreography engine implementation, are given.

Table 2.1: Summary of Flora-2 syntax used in the implementation
Flora-2 Syntax Meaning

concept[|attribute =>
type|]. Defining a concept, its attributes, and their types

object[attribute ->
value].

Specifying an instance object (frame) attribute
value

subconcept::concept. Defining inheritance between two concepts
object:concept. Instance declaration
${. . . } Reifying any kind if object on Flora-2
~ Meta-unification operator
\object Base-type in Flora-2
\if. . . \then. . . \else If-then-else formula
Predicate(parameters) Defining predicate in Flora-2
%Predicate(parameters) Forces Flora-2 to apply non-tabled predicate.
?variable Unifiable variable
?_ Don’t care unifiable variable
?_name Don’t care identifiable unifiable variable
,(\and) ;(\or) \+ Logical AND, Logical OR, Logical NOT
L :- R Logical implication operator (R→ L)
! Prolog cut operator
@\Prolog Denotes using Prolog predefined functions.

@\btp
Denotes using embedded base-types or
predicates.

setof{?X | any formula
containing variable ?X}

Generating list of all X’s where the formula is
verifiable by them.

//comment /*comment*/ Commenting

2.3 Abstract State Machine (ASM)

ASMs or Evolving Algebras were first introduced by Y. Gurevich [47][48]. ASM

theory says that every algorithm can be modeled as a step-by-step evolving system

containing two main components: a state signature which represents the current status

of the system and a finite set of transition rules which determine the next state of the
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system based on the current one. Finite State Machines (FSMs) [53] can be seen as

a specific instance of ASMs. An important point about ASMs is that transition rules

are applied in parallel at each evolution step and they are categorized into three types:

if-(else)-rule, forall-rule, and choose-rule [25].

ASMs are generally categorized into Basic-ASMs and Multi-agent ASMs. The

discussion here is based on Basic-ASMs, similarly to WSMO which configured and

extended Basic-ASMs to model choreographies. In WSMO, evolving ontologies (on-

tologized ASM [93]) are used to represent the state of the choreography, instead of

the evolving algebra of ASMs. It turns out that evolving ontologies are equivalent to

evolving algebras, and we prove this in Section 5.9. For further reading about ASMs

the reader is referred to [54][49][25]. More detailed and formal explanation about

ASM is also given in Section 5.9.

2.4 Summary

In this chapter we briefly explained the fundamental concepts which are used in

the subsequent sections. These concepts include ASM theory, F-logic, Flora-2, and

WSMO capability and choreography.
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Chapter 3

RELATED WORK AND PROBLEM DEFINITION

In this chapter, we review the related work for semantic service matching and

semantic Web Service choreography. In general, we found that in service matching

purposes, F-logic and Flora-2 are more adequate in compare with the previously pro-

posed solutions. For semantic Web Service choreography, we found none of the exis-

tent frameworks adheres to important ASM features including parallel state changing,

choose branching, and concept modes.

3.1 Semantic service matching

In [73], the authors propose a framework for Semantic Web Service discovery

using FIPA multi-agents. They have a broker architecture and deal with OWL-S [68]

rather than WSMO, as we do. In [86] the authors use WSML to specify goals and Web

Services, which is very verbose. Furthermore, they do not state the proof commitments

that are needed for a successful match in a logical way.

In [59], the authors use Flora-2 to present a logical framework for automated

Web Service discovery. Moreover, they use WSMO specification as the conceptual de-

scription of Web Services as we do. However, their specification of Web Services and

goals are very involved, and they resort to Transaction logic for proof commitments.

We will see that our specifications, as apparent in the given realistic example in Section

4.2, are quite intuitive and simple. Furthermore, we make use of only Frame-logic for

stating our proof commitments, which itself is equivalent to first-order predicate logic
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[62], and is much more accessible to the reader. The simplicity of our approach can be

an important facilitator in its adaptation by industry (after necessary enhancements to

deal with the web environment).

There are several surveys and reviews about semantical as well as non-semantical

Web Service discovery proposals, which give a general overview of this field of study

[74][64][67]. Many of the surveyed proposals are based on OWL-S. As M. Kifer et al.

stated in [60], such approaches rely on subsumption reasoning [86] and due to the lack

of rules in OWL, they are not able to exactly guarantee goal post-conditions.

3.2 Semantic Web Service choreography

Semantic Web Service frameworks such WSMO and OWL-S [68] use rich se-

mantic reasoning systems to realize semantic Web Service choreography. They model

the interaction between the client and the service as a bi-directional conversation, with

implementations such as WSMX [51] [94] [80], WSMO Studio (a visual editor for

WSML) [35][36], WSMO4J API [34], IRS-III [38] [27], and OWL-S tools [85].

OWL-S is not well aligned with the WSMO framework. It "does not provide an

explicit definition of choreography, but instead focuses on a process based description

of how complex Web Services invoke atomic Web Services" [39]. In [66], WSMO and

OWL-S are compared in detail and the author concludes that "WSMO presents some

important advantages when compared to OWL-S". Here, we point out some general

issues about OWL-S:

• OWL-S does not properly decouple the viewpoint of service requester and ser-

vice provider.

• OWL-S service profile mixes the information of WSMO goal, WSMO capability,

and non-functional properties.
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• In OWL-S, the requester has to formulate its request based on the descriptions

of profiles.

• OWL-S does not clearly define how logical expressions are used to describe

conditions and results.

• In spite of its incompleteness, WSMO choreography provides ASM as its formal

model, whereas a formal semantic OWL-S process model is still missing.

WSMX is known as the reference prototype implementation of WSMO [52][13][16].

WSMX offers a flexible architecture that can accept different components as its plug-

ins. The project has been implemented in Java, can handle service and goal specifica-

tions that are written in WSML [10][31], and uses WSML2Reasoner [63][65], which

converts WSML into the internal representation of external reasoning engines in or-

der to do the reasoning tasks. KAON2 [72] is the external reasoner used to deal with

choreography reasoning tasks [93].

We have thoroughly investigated WSMX using publicly available documents,

including published papers and source code [52][13]. We have found that:

• the implementation of choreography in WSMX was started but not completed.

• the implementation does not support parallelism and consequently inconsistency

checking is not even an issue.

• the implementation does not support intentional non-deterministic behavior ne-

cessitated by the Choose rule type.

• in the case of if-then rules, if more than one left-hand side (antecedent) are sat-

isfied by the current ontology state, right-hand sides of all matching rules are

executed sequentially, without any consistency check of the actions performed,

resulting in behavior that depends on the order of the rules.
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Furthermore, in the last version of WSML2Reasoner, which is used by WSMX

to translate WSML logical expressions to the native language of the used reasoner,

there is no translation of the Forall or Choose rule types, confirming our findings. It is

clear that several of the most fundamental features of ASMs remain unimplemented in

WSMX.

IRS-III (The Internet Reasoning Service: 3rd version) [38] [27] [37] provides

an infrastructure that utilizes the WSMO framework. The IRS system is composed of

three major components: server, client, and publisher. Choreography between a client

and a Web Service is not done directly, but through the IRS choreography engine,

which acts as a broker between the available Web Services and user requests. IRS takes

the responsibility of service discovery, mediation, communication and invocation of the

Web Services and provides the result for the goal; however, clients should formulate

their needs to IRS in the specific representation language of IRS [27]. IRS uses the

OCML ontology representation language and its server has been implemented in Lisp

[69][88].

IRS does not adhere to either original ASM, or WSMO choreography, because:

• transition rules of IRS are not run in parallel. In the case that more than one tran-

sition rule applies to the current state of the choreography, only one is selected

using an internal function for which no further details are available.

• actions in the rules are tightly coupled with the actual messages sent to the Web

Service, which makes the choreography specification inflexible; the actual call

sequence of operations are pre-determined for different kinds of requests.

• goals are modeled by pre and post conditions only and do not contain a chore-

ography component at all. The interaction is between the IRS, acting on behalf
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of the goal, and the Web Service, using solely the choreography specification of

the Web Service.

• the concept of modes is completely absent; flexible interaction between the re-

quester and service provider that is made possible by having modes is replaced

by a rigid communication model where the actor which has the initiative can

update data.

In comparison with our approach, IRS does not support parallel firing of transi-

tion rules and does not check for consistency of the updates. Consequently, the next

state of the ontology is not unique, and depends on the choice of the rule to be fired,

leading to nondeterministic behavior. Whereas we make full use of modes and en-

force their compliance, as already mentioned, IRS completely ignores them. Most

importantly, it ignores the obvious connection between the initial choreography exe-

cution state and the precondition of the goal, as well as the final state of the choreog-

raphy execution and the goal post-condition, relying instead on the built-in predicate

init-choreography to start the chain of rule firing, and the action end-choreography to

terminate the choreography run. If the choreography is not designed carefully, the sit-

uation where the choreography run terminates without the goal post-condition being

satisfied could arise.

There are other notable works on the analysis, formalization, and modeling of

choreographies. D. Roman et. al. in [82] argue that choreographies specified in the

original ASM model become quite involved when they contain contracting and enact-

ment (additional policies and constraints imposed by Web Service and goal). In [82],

they extend the current model of WSMO with Concurrent Transaction Logic (CTR)

[81] [57] to simplify the representation; however, the CTR implementation is still in
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its prototype stage [2]. M. Stollberg in [89] discusses the main reasoning and me-

diation activities required for choreography and orchestration, both in general and in

the context of WSMO. SWORD authors use rule-based expert systems to "determine

whether a desired composite service can be realized using existing services" [78]. This

approach is similar to ours in that it uses forward-chaining reasoning to develop knowl-

edge in a stepwise manner, but for the purpose of Web Service composition, and not

choreography.

3.3 Problem definition

In spite of its comprehensive definitions and elegant service composition idea,

WSMO has not been embraced by industry and no publicly available, fully working

product has been made based on it. Although WSMO choreography is built upon

the well-founded theory of Abstract State Machines (ASM) [54][49][25], our inves-

tigations into the current, ASM-based algorithm advocated for being used in WSMO

choreography [12][83][84] have revealed certain shortcomings of the algorithm, which

make it unsuitable for matching the choreography requirements of the client and Web

Service, or driving the interaction between the client and Web Service. Specifically,

the current algorithm makes no connection between the pre and post conditions of

the requester, and allows the execution of ASM to continue, even when the requester

may be satisfied by the current state. Furthermore, the algorithm uses the paradigm

of evolving ontologies where objects and relations on objects are evolving, whereas in

the original ASM formalism, it was functions and relations that were evolving, and the

mapping between the two formalisms has never been given. In this work, our goal has

been to change this state of affairs by providing solutions to the mentioned problems:

we rectify the original WSMO choreography algorithm. We introduce a new language
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for writing choreography specification adhering to WSMO choreography model. We

implement a choreography engine which supports all the types of transition rules de-

fined by ASM. By variety of examples, we show that the implemented choreography

engine can run the choreography specifications (written in the new language) correctly

and completely. Moreover, in Chapter 6, we experimentally show that the time needed

for the choreography engine to complete choreography scenarios is linearly changed

with regard to the size of the choreography specifications.

3.4 Summary

In this chapter, we briefly reviewed the existing semantic Web Service chore-

ography solutions. We explained in short why none of them adhered to the available

theoretical basis provided by WSMO and in general semantic Web Service choreogra-

phy definition.
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Chapter 4

F-LOGIC BASED SERVICE MATCHING OF SEMANTIC

WEB SERVICES

In this chapter, we use Flora-2 as a specification language for semantic descrip-

tion of Web Service components according to WSMO and implement a matching en-

gine based on inference in F-logic in order to discover Web Services that can satisfy

user requests specified in the form of goals. Our semantic specification is very concise

since it makes use of the underlying Flora-2 syntax to the highest degree possible. The

implementation of the matcher is also very compact since it makes effective use of the

meta-level capabilities of the Flora-2 system.

The rest of this chapter is structured as follows. In Section 4.1, we describe the

semantic specification of goals and Web Services in WSMO, as well as the logic we

have used in the implementation of our service matching engine. In Section 4.2, we

demonstrate the power and practicality of our scheme through a simple but realistic

appointment system scenario and show how our solution fulfills all the requirements

needed to specify and discover Web Services/goals.

4.1 Semantic Web Service specifications and the matching process

The functionality of a WSMO Web Service is defined under the capability tag

(element) which contains four axioms: precondition, assumption, post-condition and

effect [12]. Pre and post conditions represent the internal state of the Web Service,

whereas assumption and effect represent the state of the outside world (environment).
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A WSMO Web Service guarantees its post-condition and effect if its pre-condition

and assumption are true. This feature of WSMO Web Services is used for discovery

and selection purposes. For the sake of simplicity, we only consider Web Service pre-

conditions (shown by web.pre) and Web Service post-conditions (shown by web.post),

since assumptions and effects can be handled in a similar way.

Logically, the functionality of a Web Service can be shown by the following

formula (the arrow represents the implication operator).

∀x : web.pre(x)⇒ web.post(x) (4.1)

This formula means that for all instantiations of the free variables in the formula

(represented by x), if the pre-condition is true, the Web Service guaranties that the

post-condition will also be true after the Web Service has finished its execution.

The definition of a logical match between a goal and a Web Service can be de-

scribed precisely with the formula below:

∀xi∀yi : (goal.pre(xi)⇒ web.pre(yi))

∧

(goal.pre(xi)∧ (web.pre(yi)⇒ web.post(yi))⇒ goal.post(xi))

(4.2)

This formula should be shown to be a valid statement in F-logic before we can

say that the Web Service completely satisfies the functional requirements of the goal.

In this formula, xi represents the free variables in the goal and yj represents the free

variables in the Web Service.

Informally, the formula above checks that the goal pre-condition logically im-

plies the pre-condition of the Web Service (hence guarantying that the Web Service has

all it needs before it gets executed) and that the goal pre-condition, together with the

implicit statement of the Web Service functionality (that the Web Service pre-condition

implies the Web Service post-condition) logically implies the goal post-condition, thus
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guarantying that the goal will get the desired result with the execution of the Web

Service.

In our implementation of Web Service specifications and the matcher, we di-

verge slightly from the logical definition given above in order to take advantage of the

meta-logical capabilities of Flora-2 i.e. insertion of new facts which is a meta-logic

operation. Specifically, the post-condition of Web Services can contain the insert pred-

icate of Flora-2, so that the post-condition, instead of just being stated as being true, is

made to be true by insertion of facts into the knowledge base. Then the post-condition

of the goal can be tested against the new knowledge base.

Listing 4.1 depicts how our matching logic is implemented in Flora-2. Predicate

%match in line 1 takes two variables, ?goal representing a goal object and ?WS rep-

resenting a Web Service object as its parameters. In line 2, a new variable, ?module

is defined and assigned to the Web Service tag. In line 3, a new Flora-2 module with

the same name as the Web Service tag is created and the description of the goal ob-

ject is loaded into it. In line 4, the pre-condition of the goal (goal.pre) is inserted into

the created module. Then in line 5, by calling %applyWebService(?WS) the Flora-2

reasoner attempts to prove the Web Service functionality specified in the form of an

if-then-else statement in the knowledge base module. If %applyWebService(?WS) is

proven, this means that the pre-condition of the Web Service is logically implied by the

pre-condition of the goal, and moreover the actions specified in the post-condition of

the Web Service have been carried out. In line 6, the variable ?gPost is assigned to the

goal post-condition, and in line 7 its validity is checked against the current knowledge

base. If the check succeeds, this means that the goal post-condition is logically implied

by the Web Service post-condition. It should be clear that the %match predicate indeed
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verifies the validity of the formula (4.2) that we defined as the meaning of a successful

match between a goal and a Web Service.

Listing 4.1: The %match and %matcher predicates
1 %match(?goal ,?WS) :-

2 ?module =?WS.tag ,

3 %loadGoal (?goal ,? module),

4 %insertGoalPre (?goal ,? module),

5 %applyWebService (?WS),

6 ?goal[post -> ?gPost]@?module ,

7 ?gPost.

8

9 %applyWebService (?ws) :-

10 ?X = ?ws.def , ?X.

11

12 %matcher (?goal ,?WS) :-

13 \if %match(?goal ,?WS)

14 \then writeln([’Goal ’,?goal ,’matches ’,?WS ,’.’])@\prolog

15 \else writeln([’Goal ’,?goal ,’does not match ’,?WS ,’.’])@\

prolog.

4.2 Use case: medical appointment finder

In this section we show how our approach can be used to describe a scenario of

automatic medical appointment simply. The use case scenario is as follow: A patient

named Philip wants to make an appointment with a specialist doctor (ophthalmolo-

gist) in Montpellier hospital located in a city of France. His preferred dates for this

appointment are the days either before 19th or after 23rd (excluded) of the month. The

patient should provide some basic information about himself, as well as a description

of what he desires. Listing 4.2 shows a sample goal for this scenario rewritten in our

specification format.

The patient provides the specialty ophthalmology, his name Philip, the hospital

name he wishes to get the appointment from (i.e. Montpellier), and his age (which is

requested by the Web Service) in the form of an appointment request. What he wants
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is an appointment date either before the 19th or after the 23rd and an available specialist

doctor’s name.

For the Web Service side, Web Service pre and post-conditions have been given

in Listing 4.3. The Web Service uses a local database of Doctor instances contain-

ing information about doctors (i.e. doctor1 and doctor2) and some general facts (i.e.

Montpellier hospital is in Paris), and these are also depicted in Listing 4.3.

Listing 4.2: Goal specification for the appointment use case
1 o_G01:c_Goal.

2 o_G01[

3 pre -> {RequestAppointment[specialty ->Opthalmology ,

4 patientName -> Philip ,

5 appointmentDate ->?Date ,

6 hospitalName -> MontpellierHospital ,

7 age -> 22],

8 livesIn(Philip ,Paris)},

9

10 post -> ${Appointment[appointmentDate -> ?Date ,

11 doctorName -> ?DN,

12 patientName -> Philip ,

13 hospitalName -> MontpellierHospital],

14 ((? Date < 19); (?Date > 23))}

15 ].

The Web Service provides some placeholders for its inputs while checking them

over some predefined criteria (like, the patient must be at least 19 years old). Moreover,

it checks whether the patient lives in the same city as the location of candidate hospital.

After successful unification of inputs, the Web Service inserts all the possible appoint-

ments into the specified module (in this case @WS01) which is the common knowledge

base between the Web Service and the goal. In this example, just the doctors with the

specialty of ophthalmology who are working in Montpellier hospital are inserted into

this module.
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By referring to Listing 4.1 again, we can see that all these actions take place

through the call to %applyWebService(?WS) at line 5 in the %match predicate. At line

7, the Flora-2 reasoning engine attempts to prove the goal post-condition. At this point,

the appointment date is checked to verify that it conforms to the constraints specified by

the patient in the post-condition of the goal (i.e. either before the 19th or after the 23rd).

This checking filters out those doctors who are not available during the requested dates.

Listing 4.3: Web Service specification for the appointment use case
1 \doctor1[

2 doctorName -> Robert ,

3 specialty -> Neurology ,

4 hospitalName -> MontpellierHospital ,

5 availableDate -> 22

6 ]: Doctor.

7

8 doctor2[

9 doctorName -> Green ,

10 specialty -> Opthalmology ,

11 hospitalName -> MontpellierHospital ,

12 availableDate -> 10

13 ]: Doctor.

14

15 hospital(MontpellierHospital ,Paris).

16

17 o_WS01:c_WebService[

18 tag -> WS01 ,

19 def ->

20 {\ if (RequestAppointment[specialty -> ?DS]@WS01 ,

21 RequestAppointment[patientName -> ?PN]@WS01 ,

22 RequestAppointment[appointmentDate ->?Date]@WS01 ,

23 RequestAppointment[hospitalName -> ?HN]@WS01 ,

24 RequestAppointment[age -> ?X]@WS01 ,

25 (?X > 18),

26 livesIn (?PN ,?city)@WS01 ,

27 hospital (?HN ,?city),

28 ?doctor:Doctor[doctorName -> ?DN,

29 specialty -> ?DS,

30 hospitalName -> ?HN,

31 availableDate -> ?Date])

32 \then (

33 ?post = {Appointment[appointmentDate ->?Date ,

34 doctorName -> ?DN,
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35 patientName -> ?PN,

36 hospitalName -> ?HN]@WS01},

37 %insert {?post }}].

If we changed the line 15 in Listing 4.3 to hospital(MontpellierHospital,

Berlin), the match would fail since the Web Service pre-condition would not be sat-

isfied. Similarly, if we changed line 12 in listing 4.3 to availableDate -> 21 , again

the match would fail, but this time due to the fact that the goal’s post-condition would

not be satisfied.

4.3 Summary

In this chapter, we explained how Flora-2 can be used as a convenient and ex-

pressive way to model semantic Web Services matching conforming to WSMO. We

showed that matching can be logically expressed and the algorithm needed to do rea-

soning over this logical expression can be easily implemented by utilizing on the under-

lying Flora-2 reasoning engine and its meta-level capabilities. Moreover, we proposed

a sub-language of Flora-2 for defining the specifications of WSMO goals and Web Ser-

vices capability components and demonstrated the matching process through a real life

example.
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Chapter 5

ASM-BASED CHOREOGRAPHY OF SEMANTIC WEB

SERVICES WITH F-LOGIC

In the previous chapter, we used F-logic [60] for the WSMO capability speci-

fication of Web Services and goals. A capability involves pre and post-conditions of

Web Services and goals. Capabilities are used in the service discovery stage. In the this

chapter however, we focus on WSMO interfaces, which mainly include choreography

specification, and are used in the service interaction stage. Therefore, this chapter is

organized as follows.

At first, in Section 5.1, we explain the concept of semantic Web Service chore-

ography and show how it defers from the definition known in another research com-

munity. In Section 5.2, the concepts related WSMO choreography including specifi-

cations, modes, states, and transitions rules are reviewed in short. In Section 5.3, we

give the existing WSMO choreography execution algorithm, point out its weaknesses

in Section 5.4, and present a rectified version in Section 5.5. In Section 5.6, details

of the implemented choreography matcher engine are given including the used archi-

tecture, realization of ASM parallelism, support of concepts’ modes and contradiction

detection. In Section 5.7, we provide a number of realistic choreography specification

examples, representing different challenging situations, which can be choreographed

by the implemented engine successfully. More examples are available in Appendix

F. In Section 5.8, we discuss how Flora-2 inherently resolves granularity mismatch
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problem [13] [42] in semantic Web Service choreography. Lastly, in Section 5.9, we

formally prove that Evolving Ontology, used in WSMO, can be mapped to Evolving

Algebra and vice versa that was missing in the literature before.

5.1 Service composition and semantic Web Service choreography

The idea of using SOA to form an IT infrastructure for carrying out B2B in-

teractions has gained a lot of attention in the last 15 years. In this context, service

composition has been studied and analyzed in many researches. Two important and

complementary aspects of service composition are service orchestration and service

choreography.

Service orchestration is the process of coordinating two or more services for the

purpose directing them toward the accomplishment of a specific task in a centralized

way. Service choreography however (as pointed out in [52] [38] [11] as well) does not

have a unique understanding among researchers. In the Business Process Modeling

(BPM) [91] community, choreography is known as a general predefined collaboration

scenario that should be agreed upon and adhered to by two or more Web Services

in order to accomplish a business goal, without the presence of a central coordinator

(unlike orchestration). The choreography engine checks whether the participants are

passing proper messages at the right time and in the correct order specified by the

choreography designers [77]. In this paradigm, choreography is considered as a global

collaboration, rather than bi-directional interaction between a service requester and a

service provider.

The global collaboration view forms the basis of modeling languages such as

WSCI [7], WS-CDL [30], BPEL4Chor [32] [33], Let’s Dance [92], Multi-Agent Pro-

tocol (MAP) [23] and BPELgold [41]. The dominant common features of this type of
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choreography languages are:

• being process-driven: a service is modeled as a process composed of series of

milestones.

• having no role for goals: there is no concept of a service requester.

• staticity: the overall sequence of events is specified at design time.

• being non-semantic: no ontology is used, which is the main feature of a semantic

system [21].

• not having any inferencing capability

In contrast, the concept of choreography among Semantic Web Service develop-

ers is understood as the behavioral interface of a single Web Service when it is interact-

ing with its client (so-called goal), which results in an automatic, flexible conversation

(dialog) between the two. In other words, it is the implicit communication protocol be-

tween two (and only two) counterparts that should be dynamically carried out in order

to realize a conversation. The role of choreography engine is to dynamically control

the conversation and see whether it is successful or not. This concept has been named

choreography interface in [90].

In the rest of this dissertation, we use the term choreography only in the semantic

web sense. Our work also falls strictly in the semantic web view of choreography, and

consequently is not directly comparable to choreography languages adapted by the

BPM community.

To fully automate service choreography, there is the need for unambiguous, com-

puter processable semantics that can be used for automated reasoning [90]. A well-

known semantic Web Service framework is Web Service Modeling Ontology (WSMO)

[26]. In WSMO, the specification and behavior of the service provider (Web Service)
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and the service requester (goal) are described using a rich semantic notation. WSMO

choreography is a component of WSMO interface that deals with choreographing of

WSMO-based Web Services and goals.

Although WSMO based its choreography algorithm on the well-founded theory

of Abstract State Machines (ASM) [47][48], the algorithm is less than perfectly suited

for the job at hand. In fact, our literature search has failed to reveal any choreography

engine that implements it exactly as specified. For example, current implementations

(such as WSMX [52][13][50] and IRS-III [38][27]), do not fully adhere to the ASM

theory. Our own investigation into the algorithm has revealed certain important short-

comings which make it unsuitable for driving the correct interaction between goal and

Web Service choreographies, and helps explain its lack of proper adaptation in existing

choreography engine implementations.

In the following sections, our main contributions can be summarized as (i) recti-

fying the original ASM-based choreography algorithm, (ii) proposing an F-logic spec-

ification of WSMO goal and Web Service choreographies as an effective alternative

to the current specifications in WSML [31] and OCML [40], (iii) implementing the

rectified choreography algorithm in Flora-2 [56][17] with novel technics that adhere

to theory of ASMs (missing in other implementations), and (iv) validating the imple-

mented Flora-2 engine through several realistic scenarios.

5.2 ASM-based choreography in WSMO

The state-based model of WSMO choreography is inspired by ASM theory.

Choreography working group has chosen ASM because of the following features [84]:

• Minimality: ASMs are based on a small assortment of modeling primitives.

• Expressivity: ASMs can model arbitrary computations.
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• Formality: ASMs provide a formal framework to express dynamics.

Moreover, steps of evolution in ASM match the step-wise nature of interaction

between a Web Service and its users.

To apply ASM theory in practice, WSMO choreography authors modified Basic-

ASM concepts in several aspects. The concept of signature in ASM has been replaced

by the concept of WSMO ontology, which involves concepts, attributes, relations and

axioms. The concept of dynamic functions in ASM has been replaced by dynamic

changes of instances and their attribute values, effectively, replacing the concept of

Evolving Algebra [47] by the concept of Evolving Ontology [44]. This replacement,

however, has not been formally justified so far, so in Appendix E, we prove the equiv-

alence of evolving algebras and evolving ontologies, filling this gap.

5.2.1 Specification of choreographies in WSMO

In WSMO, the choreography concept has four components: nonFunctionalProp-

erties, stateSignature, state, and transitionRules. nonFunctionalProperties refers the

non-functional properties of the choreography, such as its author, date of creation and

other meta information about the choreography, described in detail in [43].

5.2.1.1 The modes of concepts

Modes are used to define precise access rights on instances of concepts to be

exercised by the environment (the client in this context) and the machine (the Web

Service in this context).

Table 5.1: The modes of concept in WSMO choreography
If the concept is static controlled in shared out
Web service can Read Read/Write Read Read/Write Read/Write
Goal can Read - Read/Write Read/Write Read

Five modes are defined in WSMO choreography, namely static, controlled, in,
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shared, and out which control reading and writing access of the machine and the envi-

ronment. Table 5.1 summarizes the encapsulation effect of each mode [26].

5.2.1.2 State

State component of WSMO choreography represents the dynamic part of the on-

going choreography instance, and consists of actual objects, i.e. instances of concepts,

as well as instances of relations. The state is changed through the insertion of new

instances, deletion of instances, or the update of attribute values in concept instances.

5.2.1.3 Transition rules

In WSMO, transition rules are in the form of the following expressions:

(i) If guard then do rules

(ii) Forall variables with guard do rules

(iii) Choose variables with guard do rules

In (i), guard should be an arbitrary logic formula without free variables; if the

guard is true, then the rules on its right-hand side are executed. In (ii), the list of

variables after Forall should be free in the guard and the scope of these variables extend

to the rules on the right-hand side. For every value of the variables such that the guard

becomes true, the actions on the right-hand side are executed in parallel. In (iii), for

only one instantiation of the free variables in the guard (chosen at random), the actions

on the right-hand side are executed [84].

In accordance with the original ASM definition, all rules at the top level, as well

as rules on the right hand side are meant to be executed in parallel. Note that in the

case of a Forall rule, an extra level of parallelism is introduced through the different

instantiations of the variables listed after the Forall keyword.

Rules on the right-hand side, also called actions, are categorized into three basic

update functions as follows:
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(1) Adding a fact

(2) Deleting a fact

(3) Updating a fact (changing the values of the attributes)

5.3 Choreography matching algorithm in WSMO

The original algorithm of WSMO choreography is about validation of a chore-

ography interface run. As such, it provides only an indirect operational semantics of

how a choreography engine should run. For the sake of completeness, it is given in

Algorithm 5.1, exactly as it is in [84].

Algorithm 5.1: The original WSMO choreography algorithm
A choreography interface run ρ is defined as a sequence of states (S0,...,Sn).
Given a choreography interface CI = (O, T, S) such that S is consistent with
O, a choreography interface run ρ = ( S0,...,Sn) is valid for CI iff:

• S0 = S
• for 0 6 i 6 n−1

– Si 6= Si+1
– U = {add(a) | a ∈ Si+1\Si} ∪ {delete(a) | a ∈ Si\Si+1} is an update set

associated with Si, O and T
– Si+1 is consistent with O, and

• the run is terminated.
CI: Choreography Interface O: Ontology

T: Set of Transition-rules S: Original State-signature

In the algorithm, an update set is not consistent if it contains an insertion and a

deletion of the same data simultaneously; otherwise it is consistent. A run is terminated

if either (a) there is an update set U associated with Sn, O and T such that U is not

consistent with Sn w.r.t. O, or (b) there is an update set U associated with Sn, O, and T

such that Sn = U(Sn), where U(Sn) denotes the state obtained after the actions specified

in the update set U, are implemented.
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5.4 Problems with the WSMO choreography algorithm

The algorithm presented in the previous section verifies whether the choreogra-

phy run is valid without addressing the role of the client of the Web Service. Indeed,

by definition, choreography should model the interactive behavior of a Web Service

from the client’s point of view, which is not truly addressed by the algorithm.

This algorithm has three major missing ingredients that make it an incomplete

way of specifying client interaction with the Web Service.

1. Choreography specification of the goal is completely ignored.

2. It is not clear what the initial state (S0) should be. In the context of choreography,

it should be state of the world, together with what the client can provide as input

through its precondition component.

3. Its termination condition happens either when there are no more valid actions

to take, or when it reaches a stable state, i.e. no more changes are possible to

the current state. A terminated run, however, does not allow one to draw any

conclusions regarding the suitability of the Web Services for a given client, since

it is possible that the client requirements are not satisfied by the state in which

the run terminated (whatever the reason for termination is). On the other hand,

suppose a run is infinite, but at the same time an intermediate state reached in

the execution is satisfactory from the client’s point of view, at which point the

execution should actually stop. This highlights the fact that the present algorithm

overlooks the obvious link between the capability required by the goal and Web

Service choreography.

Inability of the present algorithm to determine whether the client and Web Ser-

vice are compatible can be summarized with the observation that no formal relationship
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is established between what the client provides and the initial state of the choreography,

as well as the requirements of the client and the termination condition.

These deficiencies in the algorithm are rectified in the next section by (i) tak-

ing into account the client choreography specification in addition to the Web Service

choreography specification, (ii) establishing the connection between the initial state of

the world plus the input provided by the client and initial state, and (iii) defining what

a successful run is by taking into account the requirements of the client.

5.5 Improved choreography execution algorithm

In this section a modified algorithm for choreography execution is presented that

rectifies the deficiencies identified in the original algorithm given in Algorithm 5.1.

The rectified algorithm takes into account the pre and post conditions of the goal,

making it stop when the goal can be satisfied with the current state. The original

implicit style has been kept in order to highlight the differences better.

Our algorithm (Algorithm 5.2) starts with an initial state consisting of the facts

and instances implied by the goal pre-condition, facts, instances and axioms con-

tributed by the local state of the Web Service, as well as the facts, instances and axioms

contained in the common ontology. Significantly, we note that the concept of a valid

choreography interface run is replaced by a successful choreography interface run. At

each iteration, the update set is computed, and provided that it is consistent , the next

state of the system is obtained through the application of the actions in the update set.

The execution of the choreography engine terminates successfully at the earliest state

which logically implies the goal post-condition. Any other termination signifies fail-

ure, and can happen if (i) the execution engine reaches a stable state (i.e. the state

remains unchanged by the application of the transition rules) which does not logically
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imply the goal post-condition, or (ii) the update set is not consistent at any stage, or

(iii) a state is reached that is not consistent with the common ontology.

Algorithm 5.2: Rectified choreography matching algorithm
A choreography interface run ρ is defined as a sequence of states (S0,...,Sn).
Given a choreography interface CI = (Ocommon, Twebservice, Tgoal, Swebservice,
Sgoal) such that both Swebservice and Sgoal is consistent with Ocommon, a
choreography interface run ρ = ( S0,...,Sn) is successful for CI iff:

• S0 = Swebservice ∪ Sgoal ∪ Ocommon
• for 0 6 i 6 n−1

– Si 6= Si+1
– U = {add(a) | a ∈ Si+1\Si} ∪ {delete(a) | a ∈ Si\Si+1} is a consistent

update set associated with Si, Ocommon and Twebservice ∪ Tgoal
– Si+1 is consistent with Ocommon
– Sn |= goal.post

• For all k < n , ¬(Sk |= goal.post)
CI: Choreography Interface
Ocommon: Common Ontology, possibly containing concept definitions, instances and axioms
Twebservice: Web Service Choreography Transition rules
Tgoal: Goal Choreography Transition-rules
Swebservice: Local state of the web service, possibly consisting of instances and axioms
contributed to the common working memory of the choreography execution engine
Sgoal: Instances implied by the goal pre-condition that are contributed to the common working
memory of the choreography execution engine

The differences between the improved algorithm and the original algorithm stand

out: the concept of a valid choreography interface run, which says nothing about the ac-

tual suitability of the Web Service to satisfy the goal demand, is abandoned in favor of

a successful choreography interface run, which does give useful information regarding

such suitability. The initial state of the system is linked directly to the input provided

by the goal pre-condition, reflecting the actual state of affairs in the real world, and the

final state is linked directly to the post-condition of the goal. Consequently, it becomes

possible to not only show that a Web Service can satisfy the demands of the goal,

but also that there is an actual interaction sequence between the client (i.e. goal) and

the Web Service which results in such satisfaction. Furthermore, both goal and Web

35



Service choreography specifications participate in the choreography execution run.

Given the semantic specifications of a goal and Web Service, as well as imported

ontologies, the job of the choreography engine is to determine if a successful run is

possible.

5.6 Implementing the improved choreography algorithm in Flora-2

In this section we present the specification of semantic choreographies and im-

plementation of the improved choreography algorithm in Flora-2. It has been tested on

Flora-2 Reasoner 1.2, which is available since 2017-01-30 (rev: 1258b) [20], running

on Microsoft Windows 7 (64 bit).

The terms below are used in explanations in the following sections:

• Working Memory (WM) is the main place for storing the state of the chore-

ography. It keeps the whole knowledge produced by the choreography run in

real-time. The knowledge can be shrunk, expanded, and altered.

• Choreography round is the sequence of actions: (i) starting with the current

state of WM, (ii) determining which rules are applicable to this current state,

(iii) determining the changes to WM that the application of these rules will cause,

and (iv) in case there is no contradiction in the changes (to be explained later),

actually implementing those changes in the current WM, leading to a new WM.

• Delta Working Memory (∆WM) is a temporary storage place for actions to be

carried out on WM at each choreography round.

5.6.1 Semantic specification of goal and Web Service in Flora-2

As in WSMO, our Flora-2 specifications for goal and Web Service are composed

of the elements ontology, capability and choreography. Ontology contains frames and

relations that represent knowledge used by the Web Service and goal. Capability ele-
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ment encloses two sub elements, pre and post, which represent pre and postconditions.

Precondition of the goal can contain conjunctions of non-negated frames and relations.

Post-condition of the goal can be an F-logic expression (including all the logical con-

nectives). Post-condition of the Web Service can contain conjunctions of non-negated

frames and relations. Precondition of the Web Service can be an F-logic expression

(including all the logical connectives). Note the similarity between the precondition

of the goal and the post-condition of the Web Service, as well as the similarity be-

tween the post-condition of the goal and the precondition of the Web Service. Chore-

ography element is modeled by a set of transition rules. Each rule is specified by

ruleId:ruleType -> ruleBody. Goal’s ruleId is in form of gRule(OID) and Web

Service’s ruleId is in form of wsRule(OID), where OID is any Flora-2 object identifier

and is used as a label for the rule. ruleType can be either ForallRule or ChooseRule.

ruleBody is a reified Flora-2 implication shown by an if -then(-else) statement. The

implication antecedent (we refer to it as left-hand side) can be an F-logic expression,

and the implication consequent (we refer to it as right-hand side) contains a set of up-

date functions (actions). Pseudocodes 5.1 and 5.2 depict the general form of a Web

Service and a goal specifications respectively. Appendix B contains the EBNF gram-

mar of goal and Web Service specifications.

Pseudocode 5.1: General form of Web Service choreography specification
1 wsName:Goal.
2 wslName[
3 importOntology -> address of local ontology ,
4 capability -> ${
5 pre -> ${ Conjunction of frames and predicates },
6 post -> ${ F-logic expression }
7 },
8 wsRule(R01):ForallRule -> ${
9 \if ( F-logic expression )
10 \then ( Actions ) },
11 wsRule(R02):ChooseRule -> ${
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12 \if ( F-logic expression )
13 \then ( Actions ) },
14 ...
15 ].

Listing 5.2: General form of Goal choreography specification
1 goalName:Goal.
2 goalName[
3 importOntology -> address of local ontology ,
4 capability -> ${
5 pre -> ${ Conjunction of frames and predicates },
6 post -> ${ F-logic expression }
7 },
8 gRule(R01):ForallRule -> ${
9 \if ( F-logic expression )
10 \then ( Actions ) },
11 gRule(R02):ChooseRule -> ${
12 \if ( F-logic expression )
13 \then ( Actions ) },
14 ...
15 ].

5.6.2 Proposed architecture

In this section, we describe the architecture of our choreography engine.

5.6.2.1 Modules of the system

Our Flora-2 solution for implementing the choreography algorithm utilizes the

main module and two Flora-2 user modules: WM for keeping the current state sig-

nature of the choreography, and DeltaWM for keeping the actions for modifying the

current state into a new state. The main module contains the declaration of concepts,

instances and their modes provided by Web Service and goal, as well as the code for

the choreography engine. These three modules (i.e. main, WM and DeltaWM) are

interconnected, as shown in Figure 5.1.

5.6.2.2 Delta Working Memory (∆WM): Realizing ASM Parallelism

An auxiliary and transient user module named Delta Working Memory (∆WM)

is used to temporarily keep single choreography round updating actions that should
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be applied to the main knowledge-base (WM). In each choreography round, all the

updates are aggregated into ∆WM and then ∆WM is checked whether there exists

any contradiction among the requested actions (explained below). If no contradiction

is detected, then all the updates are carried out on the WM, evolving it into a new

conflict-free state.

Working Memory 
(WM) 

Delta Working Memory 
(∆WM) 

Consistency checking 

Web Service Goal 

Flora-2 
reasoner

Choreography
actions 

Choreography
actions 

Goal's 
capabilities 

Web Service's capabilities

Flora-2 Main Module Common 
Ontology 

 

Figure 5.1: Architectural view of the choreography engine

5.6.2.3 Deterministic Choreography and Contradiction

As mentioned before, the transition rules must be applied in parallel. In the

absence of any consistency checking, the rules can do contradictory actions which

should be prevented.

The three kinds of contradiction that can occur in a choreography round are [52]:

1. Inserting and deleting/updating same knowledge simultaneously

2. Updating knowledge which does not exist
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3. Deleting knowledge which does not exist

It is clear that such contradictory actions must be detected and the choreography

execution must be stopped. In the case of non-existent knowledge, it makes no sense

to remove or modify it. In the case of simultaneous insertion/deletion of the same

knowledge, if the choreography run is continued, then it becomes nondeterministic in

an unintended way: even though theoretically updates are done in parallel, in reality

they have to be done in a serial fashion, and the order in which they are carried out

leads to different WM states.

In each choreography round, in addition to testing for the above mentioned is-

sues, checking for any violation on the modes of concepts (explained in section 5.2.1.1)

are performed as well. If one of the participants wants to do an action on a concept

which violates the concept’s access mode, that action is prevented, leading to choreog-

raphy execution failure.

5.6.3 Major predicates of the choreography engine

The main process is started through a call to %start predicate which is shown in

Listing 5.1.

Listing 5.1: The top-level predicate of the choreography engine
1 %start(?goal ,?WS) :-
2 %initializations ,
3 %preProcessCheckings (?goal ,?WS),
4
5 %prepareModule(WM),
6 %prepareModule(DeltaWM),
7
8 %importOntology (?goal ,WM),
9 %importOntology (?WS,WM),
10
11 %insertGoalPre (?goal ,WM),
12 %runChoreography (?goal ,?WS).

The choreography engine execution begins with a call to the %initializations
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predicate on line 2, which currently resets the seed of the random number generator

that is used to process the choose rule type. On line 3, goal and Web Service rules

are checked for mode violations before the choreography rounds start. On lines 5 and

6, the modules WM and DeltaWM are created if they do not already exist. On lines

8 and 9, local ontologies of the goal and Web Service are loaded into WM. On line

11, the goal precondition is loaded into WM, becoming part of the initial state of the

choreography run, followed by a call to the predicate %runChoreogarphy on line 12

which tries to satisfy the goal post-condition through repeated application of goal and

Web Service transition rules.

%runChoreography implements the improved choreography algorithm given in

Section 5.5, employing recursion instead of iteration. The definition of the %run-

Choreography predicate is given in Listing 5.2. It attempts first to prove the goal

Listing 5.2: %runChoreography predicate
1 %runChoreography (?goal , ?WS) :-
2 %proveGoalPost (?goal), !,
3 %watchln([’Success! ’-?goal -’and ’-?WS-’are ’-’choreographed !’])

.
4
5 %runChoreography (?goal , ?WS) :-
6 %eraseModule(DeltaWM),
7
8 %runWsRules (?WS),
9 %runGoalRules (?goal),
10
11 ( ( %contradictory(WM,DeltaWM), !,
12 %watchln(’Choreography failed due to CONTRADICTION .’) )
13 \or
14
15 ( \+ %deltaMakesAChange(WM,DeltaWM), !,
16 %watchln(’Choreography failed due to NO CHANGE.’) )
17 \or
18
19 ( %mergeDeltaIntoWM ,
20 %runChoreography (?goal ,?WS) )
21 ).
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post-condition with the current state of WM in lines 1-3; the cut (!) operator on line

2 prevents backtracking and a success message is shown to the user on line 3. If the

goal post-condition is not satisfied, then the second definition of %runChoreography is

called: ∆WM is emptied on line 6, Web Service and goal rules are applied, populating

∆WM with pending actions to be performed on the WM (lines 8 and 9). On lines 11-13,

∆WM is checked for consistency (line 11) and whether pending actions result in a new

state of WM (line 15). In the case of inconsistent changes or no change to WM, execu-

tion is stopped to prevent infinite recursion and a failure message is reported (lines 12

and 16). Otherwise, the actions in ∆WM are applied to WM to obtain an updated WM

(line 19), and the process is repeated through a recursive call to %runChoreography

(line 20).

5.6.4 Running (firing) the rules

One of the key features of ASMs is that rules should be fired in parallel. We

realize this by placing all the insertion, deletion, and update actions on the right-hand

sides of the rules that match the current WM into ∆WM, checking them for consis-

tency, and then applying them to the previous WM to get an updated WM. The pred-

icates %deltaInsert, %deltaDelete, and %deltaUpdate represent tentative changes

to WM, not actual ones, until they are verified to not cause any conflicts.

Listing 5.3 contains the predicates for running goal and Web Service rules. The

Flora-2 setof operator is used to iterate over all rules in the choreography specification

(lines 2, 6, 11, and 15). In the case of forall rules, if the rule antecedent contains only

ground facts, it models the ASM if-then transition rule type.

Listing 5.3: Running the goal and web service rules
1 %runWsRules (?WS) :-
2 ?_Temp = setof{ ?ruleID |
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3 ?WS:WebService[wsRule (? ruleID):ForallRule -> ?ruleBody],
4 %invoke(WEBSERVICE ,? ruleBody)},
5
6 ?_Temp2 = setof{ ?ruleID |
7 ?WS:WebService[wsRule (? ruleID):ChooseRule -> ?ruleBody],
8 %invokeChoose(WEBSERVICE ,? ruleBody)}.
9 /*---------------------------------------------------*/
10 %runGoalRules (?goal) :-
11 ?_Temp = setof{ ?ruleID |
12 ?goal:Goal[gRule(? ruleID):ForallRule -> ?ruleBody],
13 %invoke(GOAL ,? ruleBody)},
14
15 ?_Temp2 = setof{ ?ruleID |
16 ?goal:Goal[gRule(? ruleID):ChooseRule -> ?ruleBody],
17 %invokeChoose(GOAL ,? ruleBody)}.

If the antecedent contains free variables, it acts like the ASM forall transition

rule type. In the case of a choose rule, the predicate %invokeChoose randomly selects

exactly one ground instance of the free variables existing in the antecedent of the rule.

5.6.5 Contradictions in applying the rules

Checks for contradictory actions are implemented by the definition of the predi-

cate %contradictory in Listing 5.4.

Listing 5.4: Contradictory cases
1 %contradictory (?WM, ?DeltaWM) :-
2 ins_action (?A1)@?DeltaWM , del_action (?A2)@?DeltaWM ,
3 %contained (?X1 ,?A1),%contained (?X2 ,?A2),?X1 = ?X2 ,!.
4
5 %contradictory (?WM, ?DeltaWM) :-
6 del_action (?A)@?DeltaWM ,
7 %convertReifiedObjectModule (?A, ?DeltaWM , ?WM, ?A_new),
8 \+ ?A_new@?WM.
9
10 %contradictory (?WM, ?DeltaWM) :-
11 update_action (?objOld ,? objNew)@?DeltaWM ,\+ ?objOld@?WM.

In lines 1-3, simultaneous insertion and deletion of the same item is detected.; in

lines 5-8, deletion of a non-existent item is detected; finally in lines 10-11, update of a

non-existent item is detected.
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5.6.6 Access control to objects of different types

ASMs define access control modes for object manipulation. In the implementa-

tion, this access control has been enforced by checking whether a given manipulation

is legal or not. This depends on the actor of the manipulation. For example, if an ob-

ject has in mode, then only a goal can change its attributes. While invoking the rules

belonging to the goal or Web Service, the legality of the access to the object is verified

before the real action.

Listing 5.5 depicts a part of the implementation of access control for a goal. Be-

fore the rule is tested against the current WM, its concepts and user predicates on its

left-hand side and right-hand side are extracted through the %extractConcepts, %ex-

tractPredicates, %filterOutPredicates predicates (lines 4-7), and access rights

of the goal are verified for those concepts via %checkAllFramesModes and %check-

AllPredicatesModes (lines 9, 14, 25, and 30). If a concept is on the right-hand side

of a rule, the goal must have write access to it. On the other hand, if it is on the

left-hand side, only read access is enough. %checkAllFramesModes (lines 35 to 39)

checks modes for a list of extracted frames through calls to %checkFrameMode (defined

on lines 41 to 45). In case of failure, error messages are generated on lines 47 to 51.

The complete list of predicates and their explanations are presented in Appendix D,

and the full source code of the implementation is available at [19].

Listing 5.5: Checking access mode
1 %check(?gOrWs ,?X) :-
2 ?X ~ ${\if ?Y \then ?Z}, !,
3
4 %reformatToString (?Y, ?YStr),
5 %extractConcepts (?YStr , [], ?conceptsInY),
6 %extractPredicates (?YStr , [], ?termList1),
7 %filterOutPredicates (?termList1 , [], ?predicatesInY),
8
9 \if (\+ %checkAllFramesModes (?gOrWs ,READ ,? conceptsInY))
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10 \then
11 (writeln([’Error: Illegal access mode in ’-?gOrWs])@\

prolog ,!,
12 \false),
13
14 \if (\+ %checkAllPredicatesModes (?gOrWs ,READ ,? predicatesInY))
15 \then
16 (writeln([’Error: Illegal access mode in ’-?gOrWs])@\

prolog ,!,
17 \false),
18
19 %decomposeRHS (?Z, [], ?allFsOrPs),
20 %reformatToString (?allFsOrPs , ?allFsOrPsStr),
21 %extractConcepts (? allFsOrPsStr , [], ?conceptsInZ),
22 %extractPredicates (? allFsOrPsStr , [], ?temp),
23 %filterOutPredicates (?temp , [], ?predicatesInZ),
24
25 \if (\+ %checkAllFramesModes (?gOrWs ,WRITE ,? conceptsInZ))
26 \then
27 (writeln([’Error: Illegal access mode in ’-?gOrWs])@\

prolog ,!,
28 \false),
29
30 \if (\+ %checkAllPredicatesModes (?gOrWs ,WRITE ,? predicatesInZ))
31 \then
32 (writeln([’Error: Illegal access in ’-?gOrWs])@\prolog ,!,
33 \false).
34 /*------------------------------------------------------------*/
35 %checkAllFramesModes (?gOrWS , ?reOrWr ,[]).
36
37 %checkAllFramesModes (?gOrWS , ?reOrWr ,[?F|?R]):-
38 %checkFrameMode (?gOrWS , ?reOrWr ,?F),
39 %checkAllFramesModes (?gOrWS , ?reOrWr ,?R).
40 /*------------------------------------------------------------*/
41 %checkFrameMode(GOAL ,READ ,?F):-
42 (?F:In \or ?F:Out \or ?F:Shared \or ?F:Static), !.
43
44 %checkFrameMode(GOAL ,WRITE ,?F):-
45 (?F:In \or ?F:Shared), !.
46
47 %checkFrameMode (GOAL ,READ ,?F):-
48 writeln([’Illegal GOAL READ action for ’,?F])@\prolog , !, \

false.
49
50 %checkFrameMode(GOAL ,WRITE ,?F):-
51 writeln([’Illegal GOAL WRITE action for ’,?F])@\prolog , !, \

false.
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5.7 Semantic choreography specification examples

5.7.1 Flight ticket reservation

In this example, we give the choreography specification for interacting with an

online flight reservation service. An autonomous software agent, acting on behalf of a

human, is used to make the purchase. The behavior of the agent is described seman-

tically in the form of a goal, with a choreography component. Similarly, the behavior

of the online reservation service is described semantically as a Web Service, with its

own choreography component. A person who wants to use the service can just provide

the required information to the agent and leave the scene. The agent then interacts

with the Web Service in accordance to its choreography, provided that it is compatible

with the Web Service’s choreography. Figure 5.2 depicts the UML sequence diagram

[45] of this process. The essence of this scenario has been inspired by the online ticket

reservation web site of an actual airline, similar to Virtual Travel Agency used in [8].

The actual scenario between a human and a web site providing flight reservation

service is as follows. After opening the airline website, the user is able to set six

items: departure city/airport, arrival city/airport, whether the trip is roundtrip or one-

way (only roundtrips are considered in this case), departure date, return date, and the

number of passengers. After the user submits this information, the reservation website

offers some candidate flight numbers and their details, including date, time, airport,

and price. The user has to choose one of the candidates. In the next step, the online

ticket reservation site asks for passenger data, such as the full name, gender, and date

of birth. After these items are provided by the user, the system asks for credit-card

information, including the holder’s name, credit-card number and its CVV code. After

the user provides the card specifications, the online ticket service queries the bank to
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validate the card. Depending on the outcome of the bank query, the flight reservation

service completes the transaction and issues a ticket to the user.

Listings 5.6 and 5.7 are Flora-2 specifications of the user (goal), and the Web

Services (reservation system) respectively. We simulate the conversation which should

take place between the reservation service and the bank because it is a third party and

not directly involved in the choreography.

8 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

5.7 Contradictions in applying the rules 

As mentioned before, there are three types of contradic-
tions [31]: (i) different rules trying to insert and delete 
same objects at the same time, (ii) a rule wanting to delete 
something which does not exist, or (iii) a rule wanting to 
update a non-existent object. Checks for these three con-
tradictory cases are implemented by the definition of the 
predicate %contradictory in Listing 5. 
 

Listing 5. Contradictory cases 
%contradictory(?WM, ?DeltaWM) :- 
ins_action(?A1)@?DeltaWM, del_action(?A2)@?DeltaWM, 
%contained(?X1,?A1),%contained(?X2,?A2),?X1 = ?X2,!.  
 
%contradictory(?WM, ?DeltaWM) :- 
del_action(?A)@?DeltaWM, 
%convertReifiedObjectModule(?A, ?DeltaWM, ?WM, ?A_new), 
\+ ?A_new@?WM. 
 
%contradictory(?WM, ?DeltaWM) :- 
update_action(?objOld,?objNew)@?DeltaWM,\+ ?objOld@?WM. 

 

5.8 Access control to objects of different types 

As mentioned before, ASMs define access control modes 
for object manipulation. In the implementation, this ac-
cess control has been enforced by checking whether a 
given manipulation is legal or not. This depends on the 
actor of the manipulation. For example, if an object is a 
type of in mode, then only a goal can change its attributes. 
This constraint is enforced by using the inheritance facili-
ty of F-logic (:: operator in Listing 1). While invoking the 
rules belonging to the goal or web service, the legality of 
the access to the object is verified before the real action. 
Listing 6 depicts the implementation of access control for 
a goal. Handling access control for web services is similar. 

 
Listing 6. Checking access mode 

%invoke(GOAL,?X) :-  
 ?X ~ ${\if ?Y \then ?Z \else ?W}, 
 %reformatToString(?Y, ?YStr), 
 %extractConcepts(?YStr, [], ?readList), 
  
 ?tempR = setof{ ?conceptR | 
 ( 
  ?readList[member(?conceptR)]@\btp, 
  %immediateSuperClass(?conceptR,?supclassR), 
  ((?supclassR == m_static) \or (?supclassR == m_in) \or 
  (?supclassR == m_shared) \or(?supclassR == m_out)) )}, 
 
 ?tempR[sort -> ?tempR_sorted]@\btp, 
 ?readList[sort -> ?readList_sorted]@\btp, 
 ?tempR_sorted == ?readList_sorted, 
  
 %reformatToString(?Z, ?ZStr),%extractConcepts(?ZStr, [], ?writeList), 
 
 ?tempW = setof{ ?conceptW | 
 ( ?writeList[member(?conceptW)]@\btp, 
  %immediateSuperClass(?conceptW,?supclassW), 
  ((?supclassW == m_in) \or(?supclassW == m_shared))) }, 
 
 ?tempW[sort -> ?tempW_sorted]@\btp, 
 ?writeList[sort -> ?writeList_sorted]@\btp, 
 ?tempW_sorted == ?writeList_sorted, 
  
 %invoke(?X). 

 
The complete source code of the engine and all the 

predicates are available at [30]. 

6 A REALISTIC CHOREOGRAPHY EXAMPLE AND ITS 

ANALYSIS 

In this section it is shown that how an application scenar-
io can be modeled by this approach efficiently. The es-
sence of this scenario has been inspired by the online tick-

et reservation web site of an actual airline. For the sake of 
simplicity and space some parts of complexity have been 
reduced which are not completely related to choreogra-
phy, such as ontology matching. The actual scenario is as 
follows. 

After opening the airline website, the user is able to 
set six items: departure city/airport, arrival city/airport, 
whether the trip is roundtrip or one-way (only roundtrips 
are considered in this case), departure date, return date, 
and the number of passengers. This information can be 
considered as the set of pre-conditions of the web service 
(without them the web service is not able to find a flight). 
By providing and submitting this information, the online 
ticket reservation system (the web service) offers some 
candidate flight numbers and their specifications includ-
ing time, airport, and price. The user has to choose one of 
the candidates based on his/her priorities (for example 
the least price). In the next step, the airline online ticket 
reservation service asks for passenger identities, such as 
the full name, gender, and date of birth. After these items 
are provided by the user (goal), the system will ask for 
credit card information, including the holder’s name, 
credit card number and its CCV code. At this point an-
other service provider comes onto the scene i.e. the user’s 
bank which issued the credit card. After the user provides 
the card specifications, the online ticket service queries 
the bank to validate the card. Depending on the outcome 
of the bank web service, the ticket reservation service 
completes the transaction and issues a ticket for the user 
(after proper financial choreography). Figure 4 depicts the 
UML sequence diagram [32] of this process. 

 

 
 

Listings 7 and 8 are Flora-2 specification of the user 
(goal), and the web services (reservation system and 
bank) respectively. 

In this example, it can be seen that the goal contains 
some pre and post conditions, as well as some choreogra-
phy rules. 

Figure 2. The UML sequence diagram for online ticket 
reservation 

Figure 5.2: The UML sequence diagram for online ticket reservation

Listing 5.6: Goal choreography specification for online flight ticket reservation
1 /* Local ontology stored in a separate file
2 Name(’Peter ’).
3 DateOfBirth (19830622).
4 Gender(’Male ’).
5 CreditCardNo ( ’1234432156788765 ’).
6 CreditCardHolder(’PETER JACKSON ’).
7 CreditCardCVV (123) .*/
8 myGoal:Goal[
9 importOntology -> ’../ Flight/GoalsOntology.flr ’,
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10
11 capability -> ${
12 pre -> ${ myRequest:RequestFlight[
13 From ->’Paris ’,
14 To->’Chicago ’,
15 Departure ->23,
16 Return ->30]},
17
18 post -> ${ (?R:Reservation [?X->?Y])} },
19
20 gRule(R01):ChooseRule -> ${
21 \if ( tripChoice (?fl_dep ,?fl_ret ,?P),
22 (\+ trip:Trip) )@WM
23 \then (
24 %deltaInsert(${trip:Trip[
25 Dep ->?fl_dep ,
26 Ret ->?fl_ret ]}) ) },
27 gRule(R02):ForallRule -> ${
28 \if ( (?Q:QuestionByWS[
29 Name ->?X,
30 DateOfBirth ->?Y,
31 Gender ->?Z])@WM ,
32 (Name(?N), DateOfBirth (?DoB), Gender (?G))@WM )
33 \then (
34 %deltaInsert(${answer:AnswerByGoal[
35 Name ->?N,
36 DateOfBirth ->?DoB ,
37 Gender ->?G]}) ) },
38 gRule(R03):ForallRule -> ${
39 \if ( (?Q:QuestionByWS[
40 CreditCardNo ->?X,
41 CreditCardHolder ->?Y,
42 CreditCardCVV ->?Z])@WM ,
43 ( CreditCardNo (?CCN),
44 CreditCardHolder (?CCH),
45 CreditCardCVV (?CCCVV) )@WM
46 )
47 \then (
48 %deltaInsert(${answer:AnswerByGoal[
49 CreditCardNo ->?CCN ,
50 CreditCardHolder ->?CCH ,
51 CreditCardCVV ->(?CCCVV)]}) ) }
52 ].

Listing 5.7: Web Services specification for online flight ticket reservation
1 /* Local ontology stored in a separate file
2 flight(F100 ,Paris ,Chicago ,23 ,250).
3 flight(F101 ,Paris ,Chicago ,23 ,350).
4 flight(F102 ,Paris ,Chicago ,25 ,400).
5 flight(F103 ,Chicago ,Paris ,29 ,150).
6 flight(F104 ,Chicago ,Paris ,30 ,200).
7 flight(F105 ,Chicago ,Paris ,30 ,150).
8 */
9 FlightReservationService:WebService[
10 importOntology -> ’../ Flight/WebServicesOntology.flr ’,
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11 capability -> ${
12 pre -> ${ ?Req:RequestFlight [?X1 ->?Y1] },
13
14 post -> ${ (?Res:Reservation [?X2 ->?Y2]) } },
15 wsRule(R01):ForallRule -> ${
16 \if ( (?R:RequestFlight[
17 From ->?X,
18 To ->?Y,
19 Departure ->?Z,
20 Return ->?W])@WM ,
21 (flight (?fl_dep ,?X,?Y,?Z,? priceDep))@WM ,
22 (flight (?fl_ret ,?Y,?X,?W,? priceRet))@WM ,
23 (%sum(?priceDep ,?priceRet ,? priceTot)) )
24 \then (
25 %deltaInsert(${tripChoice (?fl_dep ,?fl_ret ,? priceTot)} ))

},
26 wsRule(R02):ForallRule -> ${
27 \if ( ?T:Trip[
28 Dep ->?fl_dep ,
29 Ret ->?fl_ret] )@WM
30 \then (
31 %deltaInsert(${question:QuestionByWS[
32 Name ->?X,
33 DateOfBirth ->?Y,
34 Gender ->?Z]}) ) },
35 wsRule(R03):ForallRule -> ${
36 \if ( ?A:AnswerByGoal[
37 Name ->?X,
38 DateOfBirth ->?Y,
39 Gender ->?Z] )@WM
40 \then (
41 %deltaInsert(${question:QuestionByWS[
42 CreditCardNo ->?XX,
43 CreditCardHolder ->?YY,
44 CreditCardCVV ->?ZZ]}) ) },
45 wsRule(R04):ForallRule -> ${
46 \if ( ?A:AnswerByGoal[
47 CreditCardNo ->?X,
48 CreditCardHolder ->?Y,
49 CreditCardCVV ->?Z] )@WM
50 \then (
51 %deltaInsert(${validation:CreditCardValidation[
52 Number ->?X,
53 Holder ->?Y,
54 CVV ->?Z]}) ) },
55 wsRule(R05):ForallRule -> ${
56 \if ( (BankYesNoAnswer(’Yes ’))@WM ,
57 (trip:Trip[
58 Dep ->?fl_dep ,
59 Ret ->?fl_ret ])@WM )
60 \then (
61 %deltaInsert(${reservation:Reservation[
62 Number ->11100,
63 Flight1 ->?fl_dep ,
64 Flight2 ->?fl_ret ]}) ) },
65 wsRule(Bank_R01):ForallRule -> ${
66 \if ( (?R:CreditCardValidation[
67 Number ->?X, Holder ->?Y, CVV ->?Z])@WM ,
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68 (DB_CreditCard (?X,?Y,?Z) )@WM
69 )
70 \then (
71 %deltaInsert(${BankYesNoAnswer(’Yes ’)}) ) }].

In the pre-condition of the goal, the departure and arrival cities and days have

been specified. The post-condition states that a reservation instance is demanded. On

the flight Web Service side, the first rule of choreography wsRule(R01) at line 16

checks if there is a request for a flight consisting of all the necessary items, searches

for a roundtrip on the specified days and if this search is successful, inserts a new

triple into the knowledge-base containing two flight numbers and their total price. On

the goal side, the rule gRule(R01), which is of rule type choose, is responsible for

checking the existence of any choice on the knowledge-base. As soon as some flight

choices become available in the knowledge-base, this rule selects just one of them

randomly and inserts this selection into the knowledge-base. Note the condition (\+

trip:Trip) which prevents the rule from being fired again.

The rest of the rules in the goal cover the answers to the general questions such as

name, date of birth, credit-card information, etc. On the flight Web Service side, rule

wsRule(R02) at line 27 checks the knowledge-base for any trip choice by the user;

as soon as this choice becomes available, it asks for all the passenger identities. After

receiving the answers from the goal, it then asks for credit-card information and checks

its validity by querying the bank. If it receives a positive reply from the bank, it puts

a reservation into the knowledge-base which satisfies the goal post-condition and the

choreography terminates successfully; otherwise it fails. Table 5.2 shows what new

knowledge is added to WM in each choreography round of a successful choreography,

effectively tracing the execution of the choreography engine.
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Table 5.2: Items added to WM at each choreography round
Round Added knowledge

0 Name(’Peter’).
DateOfBirth(19830622).
Gender(’Male’).
CreditCardNo(’1234432156788765’).
CreditCardHolder(’PETER JACKSON’).
CreditCardCVV(123).
flight(F100,Paris,Chicago,23,250).
flight(F101,Paris,Chicago,23,350).
flight(F102,Paris,Chicago,25,400).
flight(F103,Chicago,Paris,29,150).
flight(F104,Chicago,Paris,30,200).
flight(F105,Chicago,Paris,30,150).
DB_CreditCard(’876543212345678’,’PAUL BROWN,123).
DB_CreditCard(’1234432156788765’,’PETER JACKSON’,123).

1 myRequest:RequestFlight[From->Paris]
myRequest:RequestFlight[To->Chicago]
myRequest:RequestFlight[Departure->23]
myRequest:RequestFlight[Return->30]

2 tripChoice(F100,F104,450)
tripChoice(F100,F105,400)
tripChoice(F101,F104,550)
tripChoice(F101,F105,500)

3 trip:Trip[Dep->F101]
trip:Trip[Ret->F105]

4 question:QuestionByWS[Name->_h592309]
question:QuestionByWS[DateOfBirth->_h592309]
question:QuestionByWS[Gender->_h592309]

5 answer:AnswerByGoal[Name->Peter]
answer:AnswerByGoal[DateOfBirth->19830622]
answer:AnswerByGoal[Gender->Male]

6 question:QuestionByWS[CreditCardNo->_h592309]
question:QuestionByWS[CreditCardHolder->_h592309]
question:QuestionByWS[CreditCardCVV->_h592309]

7 answer:AnswerByGoal[CreditCardNo->1234432156788765]
answer:AnswerByGoal[CreditCardHolder->PETER JACKSON]
answer:AnswerByGoal[CreditCardCVV->123]

8 validation:CreditCardValidation[Number-
>1234432156788765]
validation:CreditCardValidation[Holder->PETER JACKSON]
validation:CreditCardValidation[CVV->123]

9 BankYesNoAnswer(Yes)
10 reservation:Reservation[Number->11100]

reservation:Reservation[Flight1->F101]
reservation:Reservation[Flight2->F105]
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5.7.2 Flight ticket reservation with data granularity mismatch

Here we show that the choreography specifications of the goal and Web Service

used in Flight Reservation Service can have different data granularity. As Flora-2 keeps

the frames in the form of separated attribute->value pairs, this mismatch is handled

by the choreography engine. Listings 5.8 and 5.9 contain the specifications of the goal

and Web Service respectively.

Listing 5.8: Goal choreography specification for flight reservation (granularity
mismatch problem)

1 // Local ontology (will be stored on a separate file after
deployed)

2 /*
3 Name(’Peter ’).
4 DateOfBirth (19830622).
5 Gender(’Male ’).
6 CreditCardNo ( ’1234432156788765 ’).
7 CreditCardHolder(’PETER JACKSON ’).
8 CreditCardCVV (123).
9 */
10 myGoal:Goal.
11 myGoal[
12 importOntology -> ’../ Flight/GoalsOntology.flr ’,
13 capability -> ${
14 pre -> ${
15 myRequest:RequestFlight[
16 From ->’Paris ’,
17 To->’Chicago ’,
18 Departure ->23,
19 Return ->30]
20 },
21
22 post -> ${
23 (?R:Reservation [?X->?Y])
24 }
25 },
26 gRule(R01):ChooseRule -> ${
27 \if
28 (tripChoice (?fl_dep ,?fl_ret ,?P), (\+ trip:Trip))@WM
29 \then ( %deltaInsert(${trip:Trip[Dep ->?fl_dep ,Ret ->?fl_ret

]}) )
30 },
31
32 gRule(R02):ForallRule -> ${
33 \if (
34 (?Q:QuestionByWS[Name ->?X], Name(?N))@WM
35 )
36 \then ( %deltaInsert(${answer:AnswerByGoal[Name ->?N]}) )
37 },
38
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39 gRule(R03):ForallRule -> ${
40 \if (
41 (?Q:QuestionByWS[DateOfBirth ->?Y], DateOfBirth (?DoB))@WM
42 )
43 \then ( %deltaInsert(${answer:AnswerByGoal[DateOfBirth ->?

DoB]}) )
44 },
45
46 gRule(R04):ForallRule -> ${
47 \if (
48 (?Q:QuestionByWS[Gender ->?Z], Gender (?G))@WM
49 )
50 \then ( %deltaInsert(${answer:AnswerByGoal[Gender ->?G]}) )
51 },
52
53 gRule(R05):ForallRule -> ${
54 \if (
55 (?Q:QuestionByWS[
56 CreditCardNo ->?X,
57 CreditCardHolder ->?Y,
58 CreditCardCVV ->?Z])@WM ,
59 ( CreditCardNo (?CCN),
60 CreditCardHolder (?CCH),
61 CreditCardCVV (?CCCVV))@WM
62 )
63 \then (
64 %deltaInsert(${answer:AnswerByGoal[
65 CreditCardNo ->?CCN ,
66 CreditCardHolder ->?CCH ,
67 CreditCardCVV ->(?CCCVV)]})
68 )
69 }
70 ].

Listing 5.9: Web Service choreography specification for flight reservation (granularity
mismatch problem)

1 // Local ontology (will be stored on a separate file after
deployed)

2 /*
3 flight(F100 ,Paris ,Chicago ,23 ,250).
4 flight(F101 ,Paris ,Chicago ,23 ,350).
5 flight(F102 ,Paris ,Chicago ,25 ,400).
6 flight(F103 ,Chicago ,Paris ,29 ,150).
7 flight(F104 ,Chicago ,Paris ,30 ,200).
8 flight(F105 ,Chicago ,Paris ,30 ,150).
9 */
10 FlightReservationService:WebService.
11 FlightReservationService[
12 importOntology -> ’../ Flight/WebServicesOntology.flr ’,
13 capability -> ${
14 pre -> ${ ?Req:RequestFlight [?X1 ->?Y1] },
15 post -> ${ (?Res:Reservation [?X2 ->?Y2]) }
16 },
17 wsRule(R01):ForallRule -> ${
18 \if (
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19 (?R:RequestFlight[From ->?X,To ->?Y,Departure ->?Z,Return
->?W])@WM ,

20 (flight (?fl_dep ,?X,?Y,?Z,? priceDep))@WM ,
21 (flight (?fl_ret ,?Y,?X,?W,? priceRet))@WM ,
22 (%sum(?priceDep ,?priceRet ,? priceTot))
23 )
24 \then (
25 %deltaInsert(${tripChoice (?fl_dep ,?fl_ret ,? priceTot)}))

},
26 wsRule(R02):ForallRule -> ${
27 \if
28 (?T:Trip[Dep ->?fl_dep ,Ret ->?fl_ret ])@WM
29 \then (
30 %deltaInsert(${question:QuestionByWS[
31 Name ->?X,
32 DateOfBirth ->?Y,
33 Gender ->?Z]})) },
34 wsRule(R03):ForallRule -> ${
35 \if
36 (?A:AnswerByGoal[
37 Name ->?X,
38 DateOfBirth ->?Y,
39 Gender ->?Z])@WM
40 \then (
41 %deltaInsert(${question:QuestionByWS[
42 CreditCardNo ->?XX,
43 CreditCardHolder ->?YY,
44 CreditCardCVV ->?ZZ]}) ) },
45 wsRule(R04):ForallRule -> ${
46 \if
47 (?A:AnswerByGoal[
48 CreditCardNo ->?X,
49 CreditCardHolder ->?Y,
50 CreditCardCVV ->?Z])@WM
51 \then (
52 %deltaInsert(${validation:CreditCardValidation[
53 Number ->?X,
54 Holder ->?Y,
55 CVV ->?Z]}) ) },
56 wsRule(R05):ForallRule -> ${
57 \if (
58 (YesNoAnswer(’Yes ’))@WM ,
59 (trip:Trip[Dep ->?fl_dep ,Ret ->?fl_ret ])@WM )
60 \then (
61 %deltaInsert(${reservation:Reservation[
62 Number ->11100,
63 Flight1 ->?fl_dep ,
64 Flight2 ->?fl_ret ]}) ) },
65 wsRule(Bank_R01):ForallRule -> ${
66 \if (
67 (?R:CreditCardValidation[Number ->?X,Holder ->?Y,CVV ->?Z])

@WM ,
68 (DB_CreditCard (?X,?Y,?Z))@WM)
69 \then (
70 %deltaInsert(${YesNoAnswer(’Yes ’)}) ) }
71 ].
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Rule wsRule(R02) at line 27 in the Web Service specification poses a question

asking for passenger name, date of birth and gender in the form of a frame. In the goal

specification, the answer to each of these items are provided by rules gRule(R02) (line

32), gRule(R03) (line 39), and gRule(R04) (line 46). However, the left-hand side of

rule wsRule(R03) (line 35) in the Web Service choreography specification still can be

proven when all items are inserted by the goal and the rule can fire.

5.7.3 Choosing a branch by the goal or Web Service

There are situations where either the goal or Web Service wants to continue the

choreography in the specific branch they choose. For example, in an online payment

scenario a goal can either choose to do the payment via credit-card or PayPal. Depend-

ing on the goal choice, the choreography moves on. Here, we show this possibility in

an abstract example. Listings 5.10 and 5.11 depict the semantic goal and Web Service

choreography specifications.

Listing 5.10: Goal choreography specification for online payment (choose case)
1 // Local ontology (will be stored on a separate file after

deployed)
2 /*
3 CreditCardNo ( ’1234432156788765 ’).
4 CreditCardHolder(’PETER JACKSON ’).
5 CreditCardCVV (123).
6 PayPalThreshold (1000).
7 PayPal(UserName ,’PetJack ’).
8 PayPal(Password ,’1234’).
9 */
10 myGoal:Goal.
11 myGoal[
12 importOntology -> ’../ PayPal/GoalsOntology.flr ’,
13
14 capability -> ${
15 pre -> ${ myRequest:RequestPurchase[Item ->’ABC ’] },
16 post -> ${ ?R:PurchaseReceipt [?X->?Y] }
17 },
18 gRule(R01):ForallRule -> ${
19 \if (
20 (?Q:QuestionByWS[
21 price -> ?P,
22 paymentMethod ->?PM])@WM ,
23 (PayPalThreshold (?T))@WM , (?P > ?T)
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24 )
25 \then (
26 %deltaInsert(${answer:AnswerByGoal[
27 paymentMethod ->’CreditCard ’]}) ) },
28 gRule(R02):ForallRule -> ${
29 \if (
30 (?Q:QuestionByWS[
31 price -> ?P,
32 paymentMethod ->?PM])@WM ,
33 (PayPalThreshold (?T))@WM , (?P =< ?T)
34 )
35 \then (
36 %deltaInsert(${answer:AnswerByGoal[
37 paymentMethod ->’PayPal ’]}) ) },
38 gRule(R03):ForallRule -> ${
39 \if (
40 (?Q:QuestionByWS[
41 CreditCardNo ->?X,
42 CreditCardHolder ->?Y,
43 CreditCardCVV ->?Z])@WM ,
44 (CreditCardNo (?CCN),
45 CreditCardHolder (?CCH),
46 CreditCardCVV (?CCCVV))@WM
47 )
48 \then (
49 %deltaInsert(${answer:AnswerByGoal[
50 CreditCardNo ->?CCN ,
51 CreditCardHolder ->?CCH ,
52 CreditCardCVV ->(?CCCVV)]}) ) },
53 gRule(R04):ForallRule -> ${
54 \if (
55 (?Q:QuestionByWS[
56 PayPalUserName ->?UN,
57 PayPalPassword ->?PW])@WM ,
58 (PayPal(UserName ,?myUN),PayPal(Password ,?myPW))@WM
59 )
60 \then (
61 %deltaInsert(${answer:AnswerByGoal[
62 PayPalUserName ->?myUN ,
63 PayPalPassword ->?myPW ]}) ) }
64 ].

Listing 5.11: Web Service choreography specification for online payment (choose
case)

1 // Local ontology (will be stored on a separate file after
deployed)

2 /*
3 */
4 OnlinePayment:WebService.
5 OnlinePayment[
6 importOntology -> ’../ PayPal/WebServicesOntology.flr ’,
7
8 capability -> ${
9 pre -> ${ ?Req:RequestPurchase [?X1 ->?Y1] },
10 post -> ${ ?Rec:PurchaseReceipt [?X2 ->?Y2] }
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11 },
12 wsRule(R01):ForallRule -> ${
13 \if (
14 (?R:RequestPurchase[Item ->?X])@WM
15 )
16 \then (
17 %deltaInsert(${Q:QuestionByWS[
18 price -> 1700,
19 paymentMethod ->_]}) ) },
20 wsRule(R02):ForallRule -> ${
21 \if
22 (?A:AnswerByGoal[paymentMethod ->’PayPal ’])@WM
23 \then (
24 %deltaInsert(${Q:QuestionByWS[
25 PayPalUserName ->_,
26 PayPalPassword ->_]}) ) },
27 wsRule(R03):ForallRule -> ${
28 \if
29 (?A:AnswerByGoal[paymentMethod ->’CreditCard ’])@WM
30 \then (
31 %deltaInsert(${Q:QuestionByWS[
32 CreditCardNo ->_,
33 CreditCardHolder ->_,
34 CreditCardCVV ->_]}) ) },
35 wsRule(R04):ForallRule -> ${
36 \if
37 (?A:AnswerByGoal[
38 CreditCardNo ->?X,
39 CreditCardHolder ->?Y,
40 CreditCardCVV ->?Z])@WM
41 \then (
42 %deltaInsert(${Rec1:PurchaseReceipt[Method ->’CreditCard

’]}) ) },
43 wsRule(R05):ForallRule -> ${
44 \if
45 (?A:AnswerByGoal[
46 PayPalUserName ->?myUN ,
47 PayPalPassword ->?myPW])@WM
48 \then (
49 %deltaInsert(${Rec2:PurchaseReceipt[Method ->’PayPal ’]})

) }
50 ].

In this example, the goal specification contains two rules which have comple-

mentary left-hand side conditions: gRule(R01) at line 18 checks if the price of the re-

quested item is more than the specified threshold (in this case 1000), and gRule(R02)

at line 28 checks if the price is less than or equal to the threshold. Based on the price,

one of the answers paymentMethod->’CreditCard’ or paymentMethod->’PayPal’

57



is provided by the goal and the Web Service continues the choreography based on it.

As it can be seen, the Flora-2 relational operators such as > or =< are available for the

choreography specification.

5.8 Handling granularity mismatch problem

Flora-2 has been used not only as the specification language of semantic Web

Service capability and interface components, but also as the implementation language

of the choreography execution engine itself. This choice gives the choreography devel-

oper a concise, frame based logical syntax to work with, as well as all the functionality

of the underlying Flora-2 system in terms of its built-in predicates and reasoner. This

is in contrast to WSML, the class of languages developed for WSMO, which has a

verbose syntax, and must rely on external reasoners for all semantic computing activi-

ties, including choreography execution. Our choice of Flora-2 as both the specification

and implementation language also helps us in dealing with the granularity mismatch

problem [13] [42]. As explained in [13], data granularity can be a barrier to reach a

successful choreography. Authors of [38] demonstrate the data granularity mismatch

issue with an example: one Web Service requires credit-card details to be sent one

at a time, whereas another requires that all details are sent in single message. Frame

structures in Flora-2 intrinsically solve this type of granularity issue. For example, a

credit-card can be defined as:

joeCreditCard:CreditCard[
number -> "1234-5678-9012-3456",
name -> "Joe Brown",
CVV -> 123].

Internally, however, such a frame is represented as the composition of its data

members, and each data member of a frame can be referred to individually, without the

need to refer to other data members at the same time. Also, a frame can be built up
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incrementally through the addition of its data members. Consequently, the granularity

level with which frames of a certain concept are handled by the goal or Web Service

becomes insignificant: the Web Service or goal can provide the constituents of a frame

either in piecemeal fashion in any order or as a whole at once, and its counterpart can

consume it under both conditions.

5.9 Relationship between Evolving Algebra and Evolving Ontologies

In Evolving Algebra (ASM) theory, functions can be partial and can evolve as

time passes. For a function, not only can its previous range change, but also members

of the domain that were not mapped to values in the co-domain under the function can

be mapped to a value at a later stage. For example, if f(a) is 1, f(b) is 2, and f(c)

is undefined, after a while (based on the transition rules) f might change in a way that

f(a) remains 1, but f(b) is mapped to 3 and f(c) is mapped to 4.

Evolving Ontologies deal with objects, attributes and values of attributes, as well

as relations. The state of the system at a given moment is determined by the objects

that exist at that moment, the specific values of the attributes of each existing object,

and instances of relations. Ontologies evolve through the insertion/deletion of objects

and relations, as well as updates to the values of object attributes.

It turns out that evolving algebras and evolving ontologies are in fact equivalent

to each other in the sense that through appropriate mappings, a choreography engine

can simulate and ASM, and vice versa. Below, we give a brief formal definition of

abstract state machines, evolving ontologies, and the mappings between the two that

allow each one to simulate the other.

Definitions [87]: In an ASM state, domains (also called universes) contain data,

with functions defined over the domains. The superuniverse is the union of all domains.
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Relations are treated as Boolean valued functions, and domains are used interchange-

ably with characteristic functions (e.g. if b ∈ A, then A(b)=True). A vocabulary Σ

is a collection function names. Nullary function names (those with zero parameters)

are called constants. The pair ( f , (a1, ..., an) ), where f is a function name and (a1,

..., an) are parameters that the function can be applied to, is called a location. Every

ASM vocabulary is assumed to contain the static constants undef, True and False. A

state U of the vocabulary Σ consists of (i) the superuniverse of U (which we shall call

X or |U|), and (ii) interpretations of the function names in Σ. For any n-ary function

name f in Σ, its interpretation fU is a function from Xn into X. If c is a constant of Σ,

cU is an element of X. undef is the default value of X and represents and undetermined

object. The notions of terms, formulas, substitutions, quantifiers, logical connectives,

and interpretations of terms and formulas are exactly the same as in first order logic.

Each state is an algebra in the mathematical sense of the word, with the ex-

ception that for f ∈ Σ, f(v1,...,vn)=undef is permitted (i.e. functions can be partial).

Furthermore, as the ASM is executing its transition rules, function interpretations can

change over time, leading to the term evolving algebras. We should note, however, that

the update rule in ASMs is of the form f(t1,...,tn) := tn+1, where both the arguments and

result of the function application are terms, not values in |U|. From a logic program-

ming point of view, where we use terms to represent data, we can reasonably assume

that |U| is nothing more than H∞, the Herbrand universe (i.e. the set of all ground

terms) [46], and functions really map (tuples of) terms to other terms in H∞.

On the ontology side, we have concepts (classes in programming language par-

lance), instances (also called individuals) that are members of concepts, attributes that

are used describe properties of instances, relations that relate instances to one another,
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and axioms (logic statements that say what is true in the domain of application). C is

the set of concepts, T is the set of all terms, I ⊆ T is the set of object identifiers de-

noting instances, R is the set of relation names, and A is the set of attributes. The term

evolving ontologies comes about because update rules are used to change the values

of object attributes, and add/delete relation or concept instances to/from the working

memory to obtain a modified working memory. The complete contents of the working

memory represent a state.

5.9.1 Simulation of choreography engine execution via ASM

One way to view members of A are as functions with domain I and codomain T,

i.e. a ∈ A : I → T. Since I ⊆ T, it is also true that a ∈ A : T → T, with the provision

that if e ∈ (T - I) then A(e)=undef, i.e. A is not defined for elements of T that are not

in I. For any ontology with attribute set A, the actions of the choreography execution

engine can be simulated by an ASM with vocabulary Σ = R ∪ A. Table 5.3 gives the

actions to be performed by an ASM that simulates the choreography engine execution.

Remember that predicates in ASMs can be represented as Boolean valued functions.

Table 5.3: Simulating a move of the choreography engine with an ASM
Choreography Engine Action ASM Action

Insertion of b[a->c] a(b) := c
Deletion of b[a->c] a(b) := undef

Update of the a attribute of b to value c a(b) := c
Insertion of relation instance r(a1,...,an) r(a1,...,an) := True
Deletion of relation instance r(a1,...,an) r(a1,...,an) := False

Definition 3.1: An ASM state SA is said to correspond to an ontological state SC

iff :

• whenever b ∈ I and a ∈ A and b[a→c] is true in SC, then a ∈ Σ and a(b)=c ∈

SA.

• for any b ∈ I and a∈A, if b[a→c] does not exist, then a(b)=undef in SA.
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• whenever r ∈ R and r(a1,...,an) is true in SC, then r ∈ Σ and r(a1,...,an)=True in

SA.

• whenever r ∈ R and r(a1,...,an) is false (i.e. absent) in SC, then r ∈ Σ and either

r(a1,...,an)=False or r(a1,...,an)=undef is in SA.

Definition 3.2 (move of an ASM): σ ~> ρ denotes one step move of an ASM

when it goes from abstract state σ to abstract state ρ . σ ~>n ρ denotes the fact that an

ASM goes from abstract state σ to abstract state ρ in n moves.

Definition 3.3 (move of a choreography engine): µ ⇒ β denotes one step move

of the choreography engine when it goes from ontological state µ to ontological state

β . µ ⇒n β denotes the fact that the choreography engine goes from ontological state

µ to ontological state β in n moves.

Theorem 3.1. (simulation of choreography engine execution by ASM actions).

Let σ be a state of an ASM, and µ be an ontological state. Let Σ = R ∪ A. If (σ

corresponds to µ and µ ⇒n β ) then (σ ~>n ρ and ρ corresponds to β ), provided

that each action of the choreography engine is replaced by its corresponding action as

specified in Table 5.3.

Proof : By induction on the number of moves performed by the choreography

engine. Let P(n) denote the statement "if (σ corresponds to µ and µ =>n β ) then (σ

~>n ρ and ρ corresponds to β ), provided that each action of the choreography engine

is replaced by its corresponding action as specified in Table 5.3".

Basis: To prove the implication, we assume its antecedent and prove its conse-

quent. By definition, µ ⇒0 µ and σ ~>0 σ . By the antecedent of the implication, σ

corresponds to µ . So, σ ~>0 σ (by definition) and σ corresponds to µ , establishing the

consequent, and hence the truth of P(0).
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Inductive hypothesis: Assume P(k), i.e. "(σ corresponds to µ and µ ⇒k β ) im-

plies ( σ ~>k ρ and ρ corresponds to β )" is true. Consider the choreography execution

sequence µ ⇒k β ⇒ β ′. Take an arbitrary action the engine performed to go from β

to β ′. If this action is

• an insertion of the form b[a→c], according to Table 5.3, the function update

action a(b):=c will be performed by the ASM engine as part of ρ ~> ρ ′. Since by

the inductive hypothesis ρ corresponds to β , after this insertion by the choreog-

raphy engine as part of the move β ⇒ β ′, and the corresponding update on the

function a by the ASM engine as part of the move ρ ~> ρ ′, no violation of the

correspondence relation is caused (i.e. according to Definition 3.1, if b[a→c] is

in β ′, then a(b)=c should be in ρ ′, and it is).

• a deletion of the form b[a→c], according to Table 5.3, the function update ac-

tion a(b):=undef will be performed by the ASM engine as part of ρ ~> ρ ′. Since

by the inductive hypothesis ρ corresponds to β , after this deletion by the chore-

ography engine as part of the move β ⇒ β ′, and the corresponding update on the

function a by the ASM engine as part of the move ρ ~> ρ ′, no violation of the

correspondence relation is caused (i.e. according to Definition 3.1, if b[a→c] is

not in β ′, then a(b)=undef should be in ρ ′).

• an update of the a attribute of b to value c, according to Table 5.3, the function

update action a(b):=c will be performed by the ASM engine as part of ρ ~>

ρ ′. Since by the inductive hypothesis ρ corresponds to β , after this update by

the choreography engine as part of the move β ⇒ β ′, and the corresponding

update on the function a by the ASM engine as part of the move ρ ~> ρ ′, no

violation of the correspondence relation is caused (i.e. according to Definition
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3.1, if b[a→c] is in β ′, then a(b)=c should be in ρ ′, and it is).

• an insertion of relation instance r(a1, ..., an), according to Table 5.3, the function

update action r(a1, ..., an):=True will be performed by the ASM engine as part of

ρ ~> ρ ′. Since by the inductive hypothesis ρ corresponds to β , after this insertion

by the choreography engine as part of the move β ⇒ β ′, and the corresponding

update on the function r by the ASM engine as part of the move ρ ~> ρ ′, no

violation of the correspondence relation is caused (i.e. according to Definition

3.1, if r(a1, ..., an) is in β ′, then r(a1, ..., an):=True should be in ρ ′, and it is).

• a deletion of relation instance r(a1, ..., an), according to Table 5.3, the function

update action r(a1, ..., an):=False will be performed by the ASM engine as part of

ρ ~> ρ ′. Since by the inductive hypothesis ρ corresponds to β , after this deletion

by the choreography engine as part of the move β ⇒ β ′, and the corresponding

update on the function r by the ASM engine as part of the move ρ ~> ρ ′, no

violation of the correspondence relation is caused (i.e. according to Definition

3.1, if r(a1, ..., an) is not in β ′, then r(a1, ..., an)=False or r(a1, ..., an)=undef

should be in ρ ′, and it is).

Since none of the actions specified in Table 5.3 cause a violation of the correspondence

relation defined in Definition 3.1, and since no other actions are allowed beside those

in Table 5.3, we conclude that ρ ′ corresponds to β ′, establishing the truth of P(k+1).

QED

5.9.2 Simulation of ASM execution via choreography engine

The execution of any ASM can be simulated by a choreography engine using

evolving ontologies. The requirement is that functions need to be represented some-

how in the ontology. The reverse of the mapping given in the previous Section 5.9.1
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(i.e. whenever a(b)=c in SA then b[a→c] is true in SC) does not always work, since

a function may be n-ary, where n > 1. One possibility is to map functions of the

ASM to relations of the ontology. Specifically, every n-ary function of the ASM can

be considered an (n+1)-ary predicate of the ontology. Another possibility is to have

an object called func, with locations as attribute names, and the value associated with

the location as the value of the attribute. For example, if f(a,b,c)=d in the ASM, then

func[f(a,b,c)→d] is its representation in the ontology. We use the second approach,

since we can update objects in an atomic manner, but relation instances are not updat-

able in one step.

Definition 3.4: An ontological state SC is said to correspond to an ASM state SA

iff :

• whenever f ∈ Σ and f(b1,...,bn)= bn+1 is in SA (bn+1 6=undef) then func ∈ I and

f(b1,...,bn) ∈ A and func[f(b1,...,bn)→ bn+1] exists in SC.

• whenever f ∈ Σ and f(b1,...,bn)=undef, then func[f(b1,...,bn) → bn+1] does not

exist in SC for any value bn+1.

Theorem 3.2. (simulation of ASM execution by choreography actions). Let µ be

an ontological state and σ be a state of an ASM. Let A = {f(a1,..., an) | ( f , (a1,...,an) )

is a location of the ASM}. Let I = {func}. If (µ corresponds to σ and σ ~>n ρ) then

(µ ⇒n β and β corresponds to ρ), provided that each action of the ASM is replaced

by its corresponding action as specified in Table 5.4.

Proof : By induction on the number of moves performed by the ASM engine. Let

P(n) denote the statement "if (µ corresponds to σ and σ ~>n ρ ) then (µ ⇒n β and β

corresponds to ρ), provided that each action of the choreography engine is replaced by

its corresponding action as specified in Table 5.4".
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Table 5.4: Simulating a move of the ASM with a choreography engine
ASM Action Choreography Engine Action

f(b1,...,bn) := bn+1
(bn+1 6= undef)

Update the func object’s f(b1,..., bn) attribute
to bn+1 (if the attribute f(b1,..., bn) does not
exist for func, it is created in the update proce-
dure).

f(b1,...,bn):= undef Delete func[f(b1,..., bn)-> ?_], where ?_ is
a free variable( if f(b1,..., bn) does not exist in
func, nothing is done in the delete procedure).

Basis: To prove the implication, we assume its antecedent and prove its conse-

quent. By definition, µ ⇒0 µ and σ ~>0 σ . By the antecedent of the implication, µ

corresponds to σ . So, µ ⇒0 µ and µ corresponds to σ , establishing the consequent,

hence the truth of P(0).

Inductive hypothesis: Assume P(k), i.e. "(µ corresponds to σ and σ ~>k ρ

) implies ( µ ⇒k β and β corresponds to ρ)" is true. Consider the ASM execution

sequence σ ~>k ρ ~> ρ ′. Take an arbitrary action the ASM engine performed to go

from ρ ~> ρ ′. If this action is

• f(b1, ..., bn) := bn (bn 6= undef), according to Table 5.4, the func object’s f(b1,

..., bn) attribute will be updated by the choreography engine as part of the move

β ⇒ β ′. Since by the inductive hypothesis β corresponds to ρ , after this update

by the ASM engine as part of the move ρ ~> ρ ′, and the corresponding update

on the on f(b1, ..., bn) attribute of the func object by the choreography engine as

part of the move β ⇒ β ′, no violation of the correspondence relation given in

Definition 3.4 is caused (i.e. according to Definition 3.4, if f(b1, ..., bn) = bn+1 is

in ρ ′, func[f(b1, ..., bn)→bn+1] should be true, and it is).

• f(b1, ..., bn) := undef, according to Table 5.4, the func object’s f(b1, ..., bn) at-

tribute will be deleted completely by choreography engine as part of the move

β ⇒ β ′. Since by the inductive hypothesis β corresponds to ρ , after this update
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by the ASM engine as part of the move ρ ~> ρ ′, and the corresponding deletion

of the f(b1, ..., bn) attribute of the func object by the choreography engine as

part of the move β ⇒ β ′, no violation of the correspondence relation given in

Definition 3.4 is caused (i.e. according to Definition 3.4, if f(b1, ..., bn) = undef

is in ρ ′, func[f(b1, ..., bn)→bn+1] should not exist in β ′, and it does not).

• Since none of the actions specified in Table 5.4 cause a violation of the cor-

respondence relation defined in Definition 3.4, and since no other actions are

allowed beside those in Table 5.4, we conclude that β ′ corresponds to ρ ′, estab-

lishing the truth of P(k+1). QED

5.10 Comparison with IRS-III and WSMX

In this section we show the major differences between our approach and the two

available WSMO choreography implementations that are WSMX [51] [94] [80] and

IRS-III [38] [27] in a comparison table (Table 5.5).

Table 5.5: Comparison of our approach with IRS-III and WSMX
Concern or Specifica-
tion

IRS-III WSMX Our solution Comment

Adhering to WSMO
Choreography

No Yes Yes WSMX Choreography project has
been stopped at early stages.

Adhering to ASM con-
cepts

No Partially Yes WSMX Choreography project has
been stopped at early stages.

Underlying language OCML WSML+
KAON2

Flora-2 No usage of KAON2 has been
found in WSMX documentation.

Using peer-to-peer ar-
chitecture

No Yes Yes Based on WSMO principles

ASM if-then Yes Yes Yes Transition rules are fired simulta-
neously.

ASM Parallelism No No Yes Transition rules are fired simulta-
neously.

ASM Choose No No Yes One among some transition rules
is chosen to be fired randomly.

WSMO modes of con-
cepts

No No Yes Controlling access modes to con-
cepts.

Checking for inconsis-
tent actions

No No Yes In the presence of ASM par-
allelism, contradictory actions
should be prevented.
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We explained them in detail in section 3.2. Once again we emphasize that

WSMX choreography project was stopped in the early stages; so, in theory it adheres

to WSMO choreography, but no complete implementation is available for it.

5.11 Summary

In this chapter, we explained why the current available WSMO choreography

algorithm is insufficient to be applied in practice and introduced a rectified algorithm

for it. Based on the rectified algorithm we implemented the first working choreogra-

phy engine conforming to the all ASM principles used in the WSMO choreography

definition. We showed how the concerns such as simultaneous running transition rules

in ASM, non-deterministic choose among transition rules, and access controls can be

implemented in Flora-2. Similar to the previous chapter, we provided a new semantic

choreography language over Flora-2 to define the specification of the choreography

component of goals and Web Services. Choreography specifications and the capabil-

ity of our choreography engine to choreograph them were demonstrated through three

examples. Moreover, we explained how the granularity mismatch problem can be in-

herently solved by using Flora-2 as the underlying language. Finally, we formally

proved the equivalence of traditional ASMs and ontological ASMs (used in WSMO)

which was missing in the literature before.
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Chapter 6

TIMING EVALUATION

In this chapter we evaluate the scalability of the designed choreography engine

with regard to the complexity and size of goal and Web Service specifications. Time

is the main concern in our evaluation. We test and compare abstract choreography

specifications which are different in number of rules and different in complexity of

rules’ Left-Hand Sides (LHSs) and Right-Hand Sides (RHSs). We find the trend of the

engine response time for each case.

One of the most important features of the ASM-based choreography engine is

that the rules are checked and fired in parallel (although in the physical layer they

are checked sequentially but their effects are aggregated as if they were fired in paral-

lel). This parallelism lets rules that are checked and fired again and again unless some

guards prevent them from being fired. Therefore, firstly we study the relation between

the number of rules in choreography specifications of both goal and Web Service and

the response time and see how the response time changes by increasing in number of

total rules. For the second experiment we put some guards in the rules’ LHSs and

some insertions in the rules’ RHSs in a way that they prevent rules from being fired

again and see how the response time is improved. At last we see how the number of

conjunctions - representing the complexity of LHSs can affect the response time of the

choreography engine.

To compute the response time, we only consider the time needed for the pred-
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icate %runChoreography to reach a conclusion. To do so, we use the XSB function

epoch_milliseconds [14] to get the time of the machine once just before calling of the

predicate %runChoreography and once just after it and compute the difference between

them in terms of seconds and milliseconds. Table 6.1 shows the added lines to the

choreography engine. The complete engine code modified for testing is available in

Appendix G.

Table 6.1: Changes in the choreography engine code
Added lines to the engine code %Duration predicate

...
epoch_milliseconds (?S1 ,?MS1)

@\prolog(machine),

%runChoreography (?goal ,?WS),

epoch_milliseconds (?S2 ,?MS2)
@\prolog(machine),

%duration
(?S2 ,?MS2 ,?S1 ,?MS1 ,
?DS ,?DMS),

...

%duration (?S2 ,?MS2 ,?S1 ,?MS1 ,
?DS ,?DMS) :-

?DMS_temp \is ?MS2 - ?MS1 ,
\if (? DMS_temp < 0)
\then

(?DS \is ?S2 - ?S1 - 1,
?DMS \is ?DMS_temp + 1000)

\else
(?DS \is ?S2 - ?S1,

?DMS \is ?DMS_temp).

All the experiments were done on Windows 7 64-bit OS running on Intel®

CoreTM i5-2410M CPU @ 2.30GHz with almost 5.7 GB of available free RAM.

Reasoner is Flora-2/ErgoLite Reasoner 1.2 (Monstera deliciosa) of 2017-03-26 (rev:

a2d10ed) and XSB engine is XSB Version 3.7.0 (Clan MacGregor) of 2017-03-26.

6.1 Experimental environment

Here, we briefly explain how we generate abstract goal and Web Service chore-

ography specifications. To make comparable abstract specifications, we wrote C# code

whose role is to change the size of choreography specifications at each test in terms of

number transition rules as well as degree of complexity in the rules’ LHSs and RHSs.

The complete C# code and the tested specifications are given in Appendix G.
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The goal and Web Service choreography specifications are generated in a way

that the choreography begins with inserting the goal precondition (as usual) and after

completely firing of all rules in both goal and Web Service, the goal post-condition

becomes provable by firing of the last rule from the Web Service side. We deliberately

generate choreography specifications in this way to simulate the worst possible case of

a choreography run.

As it is shown in the subsequent sections (Listings 6.1, 6.2, and 6.3), both goal

and Web Service have the frame(s) in form of obj:Concept[attr_x->val_x], wherein

x represents a number, in their LHSs and have %deltaInsert($obj:Concept[attr_x-

>val_x]) action(s) in their RHSs. In the first two experiments the difference between

test cases are only in their number of transition rules. It means the choreography engine

has to check and fire different number of transition rules to accomplish the choreogra-

phy run. In the last experiment, we keep the size of the specification fixed in terms of

the number of transition rules at each test, but we change the size by making different

complexities in LHSs and RHSs of the transition rules. This is done by making con-

junctions of more frames at LHSs and making conjunctions of more insertion actions

at RHSs, so the choreography engine has to prove the existence of every frame at LHSs

and inserting all the frames specified at RHSs.

The overall procedure of testing is that the rule generator explained above is run

with different input parameters to generate a variety of specifications for both goal and

Web Service. At each generation step, we run the choreography engine over the gener-

ated specification and record the time spent for the processing of %runChoreography

predicate given by the choreography engine. The timing results of runs are averaged

and compared to each other. In the following, we explain each test separately.
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6.2 Response time w.r.t. the number of rules

For this experiment, we generate abstract goal and Web Service specifications

which are only different in total number of rules. Each combination is run indepen-

dently from scratch to make almost same experiment environment for all tests.

As a starting point we suppose both goal and Web Service have 5 rules (includ-

ing goal.pre), each rule has only one frame at LHS and one %deltaInsert at RHS.

The choreography is designed in a way that all the rules in both goal and Web Service

have to be fired and the last rule in Web Service provides the post-condition of the goal

which makes a successful run. Listing 6.1 shows how typical goal and Web Service

specifications are for this experiment. The specifications were generated by running

of the C# program given in Listing 7.16 (Appendix G) with the input parameter 10.

We also ran the generator with input parameters 20, 30, 40, and 50 for this experiment

and took the time needed by the choreography engine to completely choreograph the

specifications which are recored in Table 6.2. The raw data containing the execution

times recorded by the choreography engine is given in the Appendix G. This raw data

is written by Line 22 of the code given in Listing 7.17.

Listing 6.1: Goal and Web Service Choreography specifications
1 myGoal:Goal.

2 myGoal[

3 importOntology ->

4 ’../ Benchmarking/Choreography/Bench/GoalsOntology.flr ’,

5

6 capability -> ${

7 pre -> ${obj:Concept[attr_1 ->val_1]},

8 post -> ${obj:Concept[attr_10 ->val_10 ]}},

9 gRule(R1):ForallRule -> ${

10 \if (obj:Concept[attr_2 ->val_2]@WM)

11 \then (% deltaInsert(${obj:Concept[attr_3 ->val_3 ]})) },

12 gRule(R3):ForallRule -> ${

13 \if (obj:Concept[attr_4 ->val_4]@WM)
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14 \then (% deltaInsert(${obj:Concept[attr_5 ->val_5 ]})) },

15 gRule(R5):ForallRule -> ${

16 \if (obj:Concept[attr_6 ->val_6]@WM)

17 \then (% deltaInsert(${obj:Concept[attr_7 ->val_7 ]})) },

18 gRule(R7):ForallRule -> ${

19 \if (obj:Concept[attr_8 ->val_8]@WM)

20 \then (% deltaInsert(${obj:Concept[attr_9 ->val_9 ]})) }

21 ].

22 ---------------------------------------------------------

23 myService:WebService.

24 myService[

25 importOntology ->

26 ’../ Benchmarking/Choreography/Bench/WebServicesOntology.

flr ’,

27

28 capability -> ${

29 pre -> ${?OBJ:Concept [?_X1 ->?_Y1]},

30 post -> ${?OBJ:Concept [?_X2 ->?_Y2]}},

31 wsRule(R1):ForallRule -> ${

32 \if (obj:Concept[attr_1 ->val_1]@WM)

33 \then (% deltaInsert(${obj:Concept[attr_2 ->val_2 ]})) },

34 wsRule(R3):ForallRule -> ${

35 \if (obj:Concept[attr_3 ->val_3]@WM)

36 \then (% deltaInsert(${obj:Concept[attr_4 ->val_4 ]})) },

37 wsRule(R5):ForallRule -> ${

38 \if (obj:Concept[attr_5 ->val_5]@WM)

39 \then (% deltaInsert(${obj:Concept[attr_6 ->val_6 ]})) },

40 wsRule(R7):ForallRule -> ${

41 \if (obj:Concept[attr_7 ->val_7]@WM)

42 \then (% deltaInsert(${obj:Concept[attr_8 ->val_8 ]})) },

43 wsRule(R9):ForallRule -> ${

44 \if (obj:Concept[attr_9 ->val_9]@WM)

45 \then (% deltaInsert(${obj:Concept[attr_10 ->val_10 ]})) }

46 ].

As can be seen, the choreography is started by the goal precondition with the

frame obj:Concept[attr_1->val_1] and continues to run step-by-step to R9 of the Web

Service. In the last round, R9 is fired and the frame obj:Concept[attr_10->val_10]

is put into WM, which is the post-condition of the goal. Therefore, in this way the

choreography succeeds in 10 rounds (including goal precondition insertion). The se-

quence of firings is arranged in a way that specifications model the worst-case of a
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choreography run.

We repeated the experiment for 3 times with total number of 10, 20, 30, 40, and

50 rules. The response times are shown in Table 6.2.

Figure 6.1 depicts the trend of time with respect to the number of rules. As can

be seen, time complexity is O(n2). The reason is that in this experiment the number

of rules does not reflect the number of firings, because at each round, the previously

matched LHSs are again fired. To count the total number of firings, one can count

Table 6.2: Choreography engine response time
# of

rules
# of

firings
RT(ms)
1st run

RT(ms)
2nd run

RT(ms)
3rd run

Average
(ms)

10 25 2528 2621 2558 2569
20 100 10717 11466 10702 10961.67
30 225 24897 24711 24274 24627.34
40 400 43150 44585 43446 43727
50 625 67501 68322 66971 67598

them in each round and then sum them up. We use the pair (n,m) to show the number

of firings for the Web Service and goal respectively at each round; therefore, for spec-

ification with total number of 10 rules, in the 1st round we have (1,0), 2nd round (2,1),

3rd round (3,2), 4th round (4,3), and 5th round (5,4) of firings. The sum of all firings

will be (1+2+3+4+5) for the Web Service and (0+1+2+3+4) for the goal which are 25

in total.

Hence, for this experiment Formula 6.1 can be applied to count the total number

of firings, wherein R is the total number of rules.

R
2

∑
i=1

i+

R
2−1

∑
i=0

i =
(

R
2

)2

(6.1)

Figure 6.2 shows the trend of response time w.r.t. the number of firings which is
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Figure 6.1: Trend of time w.r.t. the number of rules

obviously linear (i.e. O(n)).

Figure 6.2: Trend of time w.r.t. the number of rule firings

6.3 Response time w.r.t. the number of rules (re-firing is prevented)

For the second experiment, we write the choreography specification in a way that

by firing of a rule a guard is activated at the rule’s RHS to prevent re-firing of the same

rule in the next rounds. In this way each rule is only fired once however, checking of

the LHSs should be done anyway. Listing 6.2 shows how the goal and Web Service

choreography specifications are for this experiment.
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As it can be seen, the negation of the frame (\+ thisRule:Control[off->N])@WM

is checked at LHS of every rule; if the whole condition is true (i.e. the frame thisRule:

Control[off->N])@WM is not present in WM) then the rule is fired.

Listing 6.2: Goal and Web Service Choreography specifications
1 myGoal:Goal.

2 myGoal[

3 importOntology ->

4 ’../ Benchmarking/Choreography/Bench/GoalsOntology.flr ’,

5

6 capability -> ${

7 pre -> ${obj:Concept[attr_1 ->val_1] },

8 post -> ${obj:Concept[attr_10 ->val_10] }},

9 gRule(R1):ForallRule -> ${

10 \if ((\+ thisRule:Control[off ->2])@WM ,

11 obj:Concept[attr_2 ->val_2]@WM)

12 \then (% deltaInsert(${thisRule:Control[off ->2]}) ,

13 %deltaInsert(${obj:Concept[attr_3 ->val_3 ]}) )},

14 gRule(R3):ForallRule -> ${

15 \if ((\+ thisRule:Control[off ->4])@WM ,

16 obj:Concept[attr_4 ->val_4]@WM)

17 \then (% deltaInsert(${thisRule:Control[off ->4]}) ,

18 %deltaInsert(${obj:Concept[attr_5 ->val_5 ]}) )},

19 gRule(R5):ForallRule -> ${

20 \if ((\+ thisRule:Control[off ->6])@WM ,

21 obj:Concept[attr_6 ->val_6]@WM)

22 \then (% deltaInsert(${thisRule:Control[off ->6]}) ,

23 %deltaInsert(${obj:Concept[attr_7 ->val_7 ]}) )},

24 gRule(R7):ForallRule -> ${

25 \if ((\+ thisRule:Control[off ->8])@WM ,

26 obj:Concept[attr_8 ->val_8]@WM)

27 \then (% deltaInsert(${thisRule:Control[off ->8]}) ,

28 %deltaInsert(${obj:Concept[attr_9 ->val_9 ]}) )}

29 ].

30 -------------------------------------------------------------------

31 myService:WebService.

32 myService[

33 importOntology ->

34 ’./ Benchmarking/Choreography/Bench/WebServicesOntology.flr

’,

35 capability -> ${

36 pre -> ${?OBJ:Concept [?_X1 ->?_Y1]},

37 post -> ${?OBJ:Concept [?_X2 ->?_Y2]}},

38 wsRule(R1):ForallRule -> ${
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39 \if ((\+ thisRule:Control[off ->1])@WM ,

40 obj:Concept[attr_1 ->val_1]@WM )

41 \then (% deltaInsert(${thisRule:Control[off ->1]}) ,

42 %deltaInsert(${obj:Concept[attr_2 ->val_2 ]}) )},

43 wsRule(R3):ForallRule -> ${

44 \if ((\+ thisRule:Control[off ->3])@WM ,

45 obj:Concept[attr_3 ->val_3]@WM )

46 \then (% deltaInsert(${thisRule:Control[off ->3]}) ,

47 %deltaInsert(${obj:Concept[attr_4 ->val_4 ]}) )},

48 wsRule(R5):ForallRule -> ${

49 \if ((\+ thisRule:Control[off ->5])@WM ,

50 obj:Concept[attr_5 ->val_5]@WM )

51 \then (% deltaInsert(${thisRule:Control[off ->5]}) ,

52 %deltaInsert(${obj:Concept[attr_6 ->val_6 ]}) )},

53 wsRule(R7):ForallRule -> ${

54 \if ((\+ thisRule:Control[off ->7])@WM ,

55 obj:Concept[attr_7 ->val_7]@WM )

56 \then (% deltaInsert(${thisRule:Control[off ->7]}) ,

57 %deltaInsert(${obj:Concept[attr_8 ->val_8 ]}) )},

58 wsRule(R9):ForallRule -> ${

59 \if ((\+ thisRule:Control[off ->9])@WM ,

60 obj:Concept[attr_9 ->val_9]@WM )

61 \then (% deltaInsert(${thisRule:Control[off ->9]}) ,

62 %deltaInsert(${obj:Concept[attr_10 ->val_10 ]}) )}

63 ].

By firing the rule, in addition to other frames, thisRule:Control[off->N])@WM is

inserted as well at RHS of the rule; so, in the next rounds of choreography, the negation

gets false and the rule won’t be fired again. We repeat the previous experiment (Section

6.2) with this additional consideration for 10, 20, 30, 40, and 50 rules. Timing results

are shown in Table 6.3.

Table 6.3: Choreography engine response time
# of

rules
# of

firings
RT(ms)
1st run

RT(ms)
2nd run

RT(ms)
3rd run

Average
(ms)

10 10 1389 1393 1342 1374.67
20 20 3420 2995 3730 3381.67
30 30 4914 4992 4961 4955.67
40 40 6921 6958 6880 6919.67
50 50 9204 9173 9469 9282.00
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Because at each round only one rule is fired, the total number of firings is equal

to the total number of rules in each test. Figure 6.3 depicts the trend of time w.r.t. the

total number of rules which is obviously linear (i.e. O(n)).

As expected, the time of the choreography run is dramatically reduced when

unnecessary repetitive firings are prevented.

Figure 6.3: Trend of time w.r.t. the number of rules (re-firing is prevented)

6.4 Response time w.r.t. complexity of LHSs and RHSs

For the last experiment, we consider the choreography specifications which are

different in the number of attributes. To do this, we generate four sets of the goal and

Web Service choreography specifications with total number of 10 rules. The first set

of specifications contain 1 frame in LHS and 1 insertion in RHS, the second set con-

tains conjunctions of 2 frames in LHS and conjunctions of 2 insertions in RHS, the

third set contains conjunctions of 4 frames in LHS and conjunctions of 4 insertions in

RHS, and the fourth set contains conjunctions of 8 frames in LHS and conjunctions of

8 insertions in RHS. Similar to the first experiment (Section 6.2), we do not prevent

re-firing of rules to see the effects of complexity differences better. Listing 6.3 shows
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goal’s choreography specifications with 2 and 4 attributes. Web Service’s choreogra-

phy specification is similar (timings of the first set is taken from the first experiment in

Section 6.2).

Listing 6.3: Goal specification
1 myGoal:Goal.

2 myGoal[

3 importOntology ->

4 ’../ Benchmarking/Choreography/Bench/GoalsOntology.flr ’,

5

6 capability -> ${

7 pre -> ${obj:Concept[attr_A1 ->val_A1],

8 obj:Concept[attr_B1 ->val_B1]},

9 post -> ${obj:Concept[attr_A10 ->val_A10],

10 obj:Concept[attr_B10 ->val_B10 ]}},

11 gRule(R1):ForallRule -> ${

12 \if (obj:Concept[attr_A2 ->val_A2]@WM ,

13 obj:Concept[attr_B2 ->val_B2]@WM)

14 \then (% deltaInsert(${obj:Concept[attr_A3 ->val_A3 ]}) ,

15 %deltaInsert(${obj:Concept[attr_B3 ->val_B3 ]})) },

16 gRule(R3):ForallRule -> ${

17 \if (obj:Concept[attr_A4 ->val_A4]@WM ,

18 obj:Concept[attr_B4 ->val_B4]@WM)

19 \then (% deltaInsert(${obj:Concept[attr_A5 ->val_A5 ]}) ,

20 %deltaInsert(${obj:Concept[attr_B5 ->val_B5 ]})) },

21 gRule(R5):ForallRule -> ${

22 \if (obj:Concept[attr_A6 ->val_A6]@WM ,

23 obj:Concept[attr_B6 ->val_B6]@WM)

24 \then (% deltaInsert(${obj:Concept[attr_A7 ->val_A7 ]}) ,

25 %deltaInsert(${obj:Concept[attr_B7 ->val_B7 ]})) },

26 gRule(R7):ForallRule -> ${

27 \if (obj:Concept[attr_A8 ->val_A8]@WM ,

28 obj:Concept[attr_B8 ->val_B8]@WM)

29 \then (% deltaInsert(${obj:Concept[attr_A9 ->val_A9 ]}) ,

30 %deltaInsert(${obj:Concept[attr_B9 ->val_B9 ]})) }

31 ].

32 -------------------------------------------------------------

33 myGoal:Goal.

34 myGoal[

35 importOntology ->

36 ’../ Benchmarking/Choreography/Bench/GoalsOntology.flr ’,

37

38 capability -> ${pre -> ${

39 obj:Concept[attr_A1 ->val_A1],

40 obj:Concept[attr_B1 ->val_B1],
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41 obj:Concept[attr_C1 ->val_C1],

42 obj:Concept[attr_D1 ->val_D1] },

43 post -> ${

44 obj:Concept[attr_A10 ->val_A10],

45 obj:Concept[attr_B10 ->val_B10],

46 obj:Concept[attr_C10 ->val_C10],

47 obj:Concept[attr_D10 ->val_D10] }},

48 gRule(R1):ForallRule -> ${

49 \if (

50 obj:Concept[attr_A2 ->val_A2]@WM ,

51 obj:Concept[attr_B2 ->val_B2]@WM ,

52 obj:Concept[attr_C2 ->val_C2]@WM ,

53 obj:Concept[attr_D2 ->val_D2]@WM)

54 \then (

55 %deltaInsert(${obj:Concept[attr_A3 ->val_A3 ]}) ,

56 %deltaInsert(${obj:Concept[attr_B3 ->val_B3 ]}) ,

57 %deltaInsert(${obj:Concept[attr_C3 ->val_C3 ]}) ,

58 %deltaInsert(${obj:Concept[attr_D3 ->val_D3 ]}) )},

59 gRule(R3):ForallRule -> ${

60 \if (

61 obj:Concept[attr_A4 ->val_A4]@WM ,

62 obj:Concept[attr_B4 ->val_B4]@WM ,

63 obj:Concept[attr_C4 ->val_C4]@WM ,

64 obj:Concept[attr_D4 ->val_D4]@WM)

65 \then (

66 %deltaInsert(${obj:Concept[attr_A5 ->val_A5 ]}) ,

67 %deltaInsert(${obj:Concept[attr_B5 ->val_B5 ]}) ,

68 %deltaInsert(${obj:Concept[attr_C5 ->val_C5 ]}) ,

69 %deltaInsert(${obj:Concept[attr_D5 ->val_D5 ]}) )},

70 gRule(R5):ForallRule -> ${

71 \if (

72 obj:Concept[attr_A6 ->val_A6]@WM ,

73 obj:Concept[attr_B6 ->val_B6]@WM ,

74 obj:Concept[attr_C6 ->val_C6]@WM ,

75 obj:Concept[attr_D6 ->val_D6]@WM)

76 \then (

77 %deltaInsert(${obj:Concept[attr_A7 ->val_A7 ]}) ,

78 %deltaInsert(${obj:Concept[attr_B7 ->val_B7 ]}) ,

79 %deltaInsert(${obj:Concept[attr_C7 ->val_C7 ]}) ,

80 %deltaInsert(${obj:Concept[attr_D7 ->val_D7 ]}) )},

81 gRule(R7):ForallRule -> ${

82 \if (

83 obj:Concept[attr_A8 ->val_A8]@WM ,

84 obj:Concept[attr_B8 ->val_B8]@WM ,

85 obj:Concept[attr_C8 ->val_C8]@WM ,

86 obj:Concept[attr_D8 ->val_D8]@WM)

87 \then (

88 %deltaInsert(${obj:Concept[attr_A9 ->val_A9 ]}) ,

89 %deltaInsert(${obj:Concept[attr_B9 ->val_B9 ]}) ,
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90 %deltaInsert(${obj:Concept[attr_C9 ->val_C9 ]}) ,

91 %deltaInsert(${obj:Concept[attr_D9 ->val_D9 ]}) )}

92 ].

Figure 6.4 shows the trend of time w.r.t. the number of terms (frames and inser-

tions) in LHS and RHS. It is clearly seen that the trend is linear (i.e. O(n)).

Table 6.4: Choreography engine response time
# of terms

in LHS and
RHS

RT(ms)
1st run

RT(ms)
2nd run

RT(ms)
3rd run

Average
(ms)

1 2528 2621 2558 2569
2 4870 5268 4968 5035.34
4 9128 9379 9411 9306
8 18135 17816 18450 18133.67

Figure 6.4: Trend of time w.r.t. the number of terms in rule LHS and RHS

6.5 Summary

In this chapter, we benchmarked our choreography engine introduced in the pre-

vious chapter. We found that in the presence of excessive transition rules firings the

worst time needed for the choreography engine has the complexity of O(n2) with re-

gard to size of the goal and web service choreography specifications i.e. total num-
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ber of transition rules in them. If re-firing is prevented the complexity is reduced to

O(n) which is an acceptable level of performance in many applications. Moreover, we

showed that the complexity is O(n) with regard to transition rules’ LHSs and RHSs

complexity.

82



Chapter 7

CONCLUSION AND FUTURE WORK

In this work, we demonstrated how Flora-2 can be used as a convenient and ex-

pressive way to model semantic Web Services matching and semantic Web Service

choreographing conforming to WSMO. We showed that semantic Web Service match-

ing challenge can be handled very effectively by relying on the underlying Flora-2

reasoning engine and its meta-level capabilities.

For semantic Web Service choreography, we identified important weaknesses in

the original ASM-based choreography execution algorithm for WSMO, which pre-

vented it from being useful in a practical way, and improved it in order to remedy the

identified weaknesses. The improved ASM-based choreography execution algorithm

establishes the missing connection between the capability and interface components of

WSMO. We used F-logic and Flora-2 to specify ASM-based choreographies of seman-

tic Web Services in a concise and logical manner, and implemented a fully functional

choreography execution engine based on our improved algorithm in Flora-2. The full

functionality of Flora-2 and its underlying reasoning system is available for developing

ontologies and writing transition rules in the choreography specification. To the best

of our knowledge, this work is the first functional WSMO choreography implemen-

tation that fires rules in parallel, as required in the theory of ASMs, and models the

ASM if-then(-else), forall, and choose rule types authentically, while enforcing ac-

cess modes of concepts and relations. We demonstrated the workings of our algorithm
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through several real-life examples, concerning different challenging scenarios, where

both Web Service and goal choreographies were specified in our F-logic based syntax.

We showed that our choreography engine implemented in Flora-2 can successfully

choreograph the goals and Web Services specified in the examples. We also developed

a visual tool that helps choreography engineers write specifications in a convenient

manner, reducing the chance of mistakes in the specification.

Another important contribution of our work is that we proved for the first time the

equivalence of evolving algebras (ASMs) and evolving ontologies (the basis of seman-

tic choreography engines) through the definition of bi-directional mappings between

them.

For future work, we are planning to develop our system through the addition of

a grounding mechanism, as well as a mediation component. We also intend to identify

and classify different types of general requests and general responses among software

components and present them in the form of an ontology. Such a classification scheme

will help in the development of accurate and commonly acceptable choreographic in-

teractions.
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Appendix A: Visual editor for Flora-2 based SWS specifications (VS-

Chor)

Visual Semantic Choreography (VSChor) is a visual software environment which

we developed to facilitate designing and deploying goals and web services with Flora-

2 specifications. Choreography designers can define concepts, frames, predicates and

specify the structures of goals and web services by filling-out the prepared forms and

automatically generate Flora-2 specifications that are ready to run on the developed

choreography engine. The software also embeds the engine code and related libraries

in a deployment folder. The user can test the choreography by just running a single

batch file, provided the Flora-2 system is already installed on the local platform. The

Figure 7.1: Main entrance form of VSChor
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main window of the program is shown in Figure 7.1. The left tool box contains five

icons: from top to down, Repository, Add Concept, Add Goal, Add Web Service, and

Deploy, respectively. The repository button is used to show the currently registered

concepts, frames, predicates, goals, and Web Services (Figure 7.2). It also allows

the user to change the definitions of goals and Web Services. Repositories can be

Figure 7.2: Repository form

saved and loaded by the Repository menu located at the top-left corner of the main

form (Figure 7.3). Concepts can be defined by Add Concept form (Figure 7.4). The

user can enter concept attributes and their types by filling out the available grid and

determine the proper mode type by using the available combobox.

Goals and Web Services can use instances of the concepts in their specifications.

The Add Goal and Add Service forms are essentially the same, so here we only illus-

trate Add Goal form, depicted in Figure 7.5.
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Figure 7.3: Loading and saving repositories

The Add Goal form contains places for the name, description, local ontology,

capabilities, pre and post conditions, and transition rules. The Semantic description

box shows the current textual description of the goal in Flora-2. The Add relation

and Add frame buttons let the user define new (or use already defined) relations and

rules respectively (Figure 7.6). Post-condition of a goal may contain a complex logic

expression consisting of the and, or, and not operators, as well as frames and predicates.

VSChor lets the user create a logic tree representing the logic expression of the goal

post-condition (Figure 7.5. Post-condition view).

Transition rules are created through another form (Figure 7.7), accessible by

clicking on the Add rule button on Add Goal and Add Web Service forms. The user

can specify the name, rule type (either Forall or Choose), antecedent (left-hand side),

and consequent (right-hand side) of the rules. Similar to the goal post-condition, the

antecedent can contain a logic expression of any complexity. The consequent can con-

sist of a set of actions, which should be one of %deltaInsert, %deltaDelete, or

%deltaUpdate.

At any stage the user can modify the contents of goals (Web Services) using

the change semantic goal (Web Service) form, accessible through the repository form.
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After the choreography design is completed, a deployment package is generated by

clicking on the deployment button (Figure 7.1. last button).

Figure 7.4: Add Concept form

The deployment package contains all the files related to goals, Web Services,

common ontology, choreography engine, function libraries, as well as a batch file

called “Run.bat”(Figure 7.8). The batch file allows the user to test the choreography

simply by double clicking on it.
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Figure 7.5: Add Goal form

Figure 7.6: Add Frame form
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Figure 7.7: Add transition rule form

Figure 7.8: Deployment folder
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Appendix B: E-BNF grammar for Flora-2 goal and Web Service spec-

ifications

Here, we present the current grammar of goal and Web Service specifications

written in E-BNF [1] (Table 7.1).
Listing 7.1: E-BNF grammar for goal and Web Service specifications

1 <webservice > ::= <oid > : WebService ’[’
2 importOntology -> <symbolString > ,
3 capability -> $ ’{’
4 pre -> $ ’{’ <condition > ’}’ ,
5 post -> $ ’{’ <andcondition > ’}’
6 ’}’
7 [, <wstransitionrules > ] ’]’ .
8
9 <goal > ::= <oid > : Goal ’[’
10 importOntology -> <symbolString > ,
11 capability -> $ ’{’
12 pre -> $ ’{’ <andcondition > ’}’ ,
13 post -> $ ’{’ <condition > ’}’
14 ’}’
15 [, <gtransitionrules > ] ’]’ .
16
17 <andcondition > ::= <frame > | <predicate > ) {, ( <frame > | <

predicate > ) }
18
19 <condition > ::= <condition > ; <term > | <term >
20
21 <term > ::= <term > , <factor > | <factor >
22
23 <factor > ::= <frame > | <predicate > | ’(’ <condition > ’)’ |

’(’ \+ <condition > ’)’
24
25 <wstransitionrules > ::= <wsrule > {, <wsrule > }
26
27 <gtransitionrules > ::= <grule > {, <grule > }
28
29 <wsrule > ::= wsRule ( <oid > ) : <ruletype > -> $ ’{’
30 \if <condition >
31 \then ’(’ <actions > ’)’
32 [ \else ’(’ <actions > ’)’ ] ’}’
33
34 <grule > ::= gRule ( <oid > ) : <ruletype > -> $ ’{’
35 \if <condition >
36 \then ’(’ <actions > ’) ’
37 [ \else ’(’ <actions > ’)’ ] ’}’
38
39 <ruletype > ::= ForallRule | ChooseRule
40
41 <actions > ::= <action > { , <action > }
42
43 <action > ::= %deltaInsert ’(’ <frame > ’)’ |
44 %deltaInsert ’(’ <predicate > ’)’ |
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45 %deltaDelete ’(’ <restrictedframe > ’)’ |
46 %deltaDelete ’(’ <predicate > ’)’ |
47 %deltaUpdate ’(’ <objname > , <attrname > , <f_term >

, <f_term > ’)’
48
49 <predicate > ::= <predname > [ ’(’ [ <f_term > {, <f_term > } ] ’)’ ]
50
51 <frame > ::= <objname > : <concept > ’[’ [ <attribute -value -

pairs > ] ’]’
52
53 <attribute -value -pairs > ::= <attrname > -> <f_term > { , <attrname >

-> <f_term > }
54
55 <restrictedframe > ::= <objname > ’[’ [ <attribute -value -pairs > ]

’]’
56
57 <concept > ::= <oid >
58
59 <attrname > ::= <oid >
60
61 <objname > ::= <oid >
62
63 <predname > ::= <oid >
64
65 <symbolString > ::= ’’’<string >’’’
66
67 <string > ::= Any sequence of characters
68
69 <oid > ::= Any valid Flora -2 object identifier
70
71 <f_term > ::= Any valid Flora -2 term
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Appendix C: Converting JSON to Flora-2

Currently, REST (REpresentational State Transfer) is the most popular architec-

ture in the development of Web Services. In RESTful architectures, message passing

and data transfer is done via HTTP over the network. Clients use methods such as

GET, POST, and PUT to trigger actions or to retrieve resources held by Web Services.

Web Services, on the other hand, respond to these methods with HTTP messages con-

taining formatted (and possibly annotated) information. The dominant formats in use

are XML (eXtensible Markup Language) and JSON (JavaScript Object Notation). Be-

tween these two, JSON is the preferred format in REST because of its simplicity and

readability. However, as it is a minimal type-free data format it does not support se-

mantic annotations. It should be kept in mind that XML and JSON are not equivalent

because the former is a language with schema, types and links but the latter is just

a data presentation format. JSON-LD (JSON for Linked-Data) is a typed version of

JSON and has the potential to be used in semantic based systems, but it is not integrated

with the most of the popular available Web Services yet. In this appendix we present

a scheme to map JSON context to an equivalent Flora-2 context. This scheme paves

the way for our Flora-2 choreography solution to interact with the currently available

REST APIs.

JSON supports only two types of structure, namely objects and arrays. Objects

are anonymous and contain comma separated key-value pairs. Keys are always strings

and values can be other objects, string/Boolean/numerical literals, or arrays. Arrays

contain series of objects and can be nested as well.

In Flora-2, frames model objects. Unlike JSON, frames have names in the form
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of object identifiers and can be instantiated from a concept (class). Frames are com-

posed of attribute-value pairs which are similar to JSON key-value pairs. But because

objects are anonymous in JSON it is not straightforward to directly map key-value pairs

in JSON to attribute-value pairs in Flora-2. Another consideration is that in JSON, ob-

jects are referenced by their relative position and path in the whole structure and there

is no direct pointer to a specific data, but in Flora-2 frames are decomposed and stored

in form of predicates. Data in Flora-2 is retrieved by unification, so accessing data is

fundamentally different from JSON. Taking into account the above mentioned issues,

below we present a mapping scheme between JSON and Flora-2.

The top-level entity in JSON can be either an object or an array. We can show this

by frames json[content->object(obj_id)] or json[content->array(arr_id)].

In JSON, key-value pairs belonging to the same object are wrapped together

inside the object. We can show this binding by combining predicate and frame no-

tations in Flora-2. For example, the attribute-value pairs object(id_1,a)->1 and

object(id_1,b)->2 tell that both attributes a and b belong to the object with id id_1

and their values are 1 and 2 respectively. In this way, the query object(id_1,?X)->?Y

returns all attribute-value pairs belonging to the object with id id_1. Moreover, id_1

can be used as a direct reference to the object; in contrast to JSON wherein objects are

anonymous.

The elements of an array in JSON are referenced by their position in a comma

separated list. To show JSON lists in Flora-2 we can use again predicate and frame

notations. For example, the attribute-value pair array(id_1, 2)->a says that the

second element in array id_1 has the value a.

An array which itself is a value of an attribute can be represented in Flora-2
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as the predicate array whose parameter is the (generated) id of the array. For exam-

ple the JSON object "someArray": [10,20] can be represented in Flora-2 by the

facts object(id_1, "someArray")->array(id_2) , array(id_2, 1)->10, and ar-

ray(id_2, 2)->20 where id_1 and id_2 are automatically generated Flora-2 object

identifiers. Using the Flora-2 reasoner, one can query such composite structures in a

simple manner. For example, a query such as someFrame:someConcept[object(id_1,

a)->array(id_2), array(id_2, ?X)->?Y] returns all the elements’ index-value pairs

of array id_2 which is in turn the value of attribute a of object id_1.

Table 7.2: An example of JSON to Flora-2 conversion
JSON Flora-2

[
{
"firstName ": "John",
"lastName" : "doe",
"age" : 26,
"address" :
{
"street" : "Naist",
"city" : "Nara",
"zipCode ": "0192"

},
"phoneNumbers ": [
{
"type" : "iPhone",
"number ":

"1 -567 -8888"
},
{
"type" : "home",
"number ":

"1 -567 -8910"
}

]
}

]

json[content -> array(arr_01)].

array(arr_01 ,1) -> object(obj_01).
object(obj_01 ," firstName ") -> "John".
object(obj_01 ," lastName ") -> "doe".
object(obj_01 ,"age") -> 26.
object(obj_01 ," address ") ->

object(obj_02).

object(obj_02 , "street ") -> "Naist".
object(obj_02 , "city") -> "Nara".
object(obj_02 , "postalCode ") -> "0192".

array(arr_01 ,2) -> object(obj_03).
object(obj_03 ," phoneNumbers ") ->

array(arr_02).

array(arr_02 ,1) -> object(obj_04).
object(obj_04 ,"type") -> "iPhone ".
object(obj_04 ," number ") ->

"1 -567 -8888".

array(arr_02 ,2) -> object(obj_05).
object(obj_05 ,"type") -> "home".
object(obj_05 ," number ") ->

"1 -567 -8910".

Table 7.2 depicts an example of REST response message, both in JSON and its
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equivalent Flora-2 notations. It is obvious that data presented in Flora-2 can be simply

queried and reasoned about, and these are not possible with JSON.
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Appendix E: Choreography engine source codes

Main Predicates (Choreography.flr)

Listing 7.2: Main Predicates
1 /*** Generated by Visual Semantic Choreography on 3/30/2017

8:17:15 PM ***/
2
3 #include "Utility.flr"
4 #include "Library.flr"
5 #include "ModeChecking.flr"
6 #include "../ CommonOntology.flr"
7 #include "../ WebServices.flr"
8 #include "../ Goals.flr"
9
10 /*---------------------------------------------------*/
11 // (1) start
12 // (2) runChoreography
13 // (3) runWsRules
14 // (4) runGoalRules
15 // (5) invoke
16 // (6) invokeChoose
17 // (7) mergeDeltaIntoWM
18 // (8) deltaMakesAChange
19 // (9) contradictory
20 /*---------------------------------------------------*/
21
22 /* (1) start*/
23 %start(?goal ,?WS, ?Result) :-
24 %debug(on),
25 %initializations ,
26 // %preProcessCheckings (?goal ,?WS),
27
28 %prepareModule(WM),
29 %prepareModule(DeltaWM),
30 %prepareModule(reportM),
31
32 %importOntology (?goal ,WM),
33 %importOntology (?WS,WM),
34
35 %insertGoalPre (?goal ,WM),
36 %runChoreography (?goal ,?WS, ?Result).
37 /*---------------------------------------------------*/
38 /* (2) runChoreography */
39 /* The base case */
40 %runChoreography (?goal , ?WS, ?Result) :-
41 \+ stopEngine ,
42 %proveGoalPost (?goal), !,
43 %showModule(WM),
44 %watchln([’Success! ’-?goal -’and ’-?WS-’are ’-’

choreographed !’]),
45 ?Result = ’Yes ’,
46 insert{stopEngine }.
47 // %showModule(reportM).
48 /* The general case */
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49 %runChoreography (?goal , ?WS, ?Result) :-
50 \+ stopEngine ,
51
52 %eraseModule(DeltaWM),
53
54 %runWsRules (?WS),
55 %runGoalRules (?goal),
56
57 %showModule(WM),
58
59 ( ( %contradictory(WM,DeltaWM),!, writeln(’Choreography

failed due to CONTRADICTORY ACTIONS ’)@\prolog , ?Result
= ’No ’);

60 ( \+ %deltaMakesAChange(WM,DeltaWM), !, writeln(’
Choreography failed due to NO CHANGE ’)@\prolog , ?
Result = ’No ’) ;

61 ( %mergeDeltaIntoWM ,
62 %runChoreography (?goal ,?WS, ?Result) ) ).
63
64 /* \if (( %contradictory(WM,DeltaWM),?Reason=contradictory);

((\+ %deltaMakesAChange(WM,DeltaWM)), ?Reason=NoChange) )
65 \then (writeln(’Choreography failed Due to ’-?Reason)@\

prolog ,!, insert{stopEngine })
66 \else (
67 %mergeDeltaIntoWM ,
68 %runChoreography (?goal ,?WS, Result)).

*/
69 /*---------------------------------------------------*/
70
71 /* (3) runWsRules */
72 %runWsRules (?WS) :-
73 ?_Temp =
74 setof{ ?ruleID | ?WS:WebService[wsRule (? ruleID):

ForallRule -> ?ruleBody],
75 %invoke(WEBSERVICE ,? ruleBody)},
76 ?_Temp2 =
77 setof{ ?ruleID | ?WS:WebService[wsRule (? ruleID):

ChooseRule -> ?ruleBody],
78 %invokeChoose(WEBSERVICE ,? ruleBody)}.
79 /*---------------------------------------------------*/
80
81 /* (4) runGoalRules */
82 %runGoalRules (?goal) :-
83 ?_Temp =
84 setof{ ?ruleID | ?goal:Goal[gRule(? ruleID):

ForallRule -> ?ruleBody],
85 %invoke(GOAL ,? ruleBody)},
86 ?_Temp2 =
87 setof{ ?ruleID | ?goal:Goal[gRule(? ruleID):

ChooseRule -> ?ruleBody],
88 %invokeChoose(GOAL ,? ruleBody)}.
89 /*---------------------------------------------------*/
90 /* (5) invoke */
91 /* WEB SERVICE IF-THEN */
92 %invoke(WEBSERVICE ,?X) :-
93 ?X ~ ${\if ?Y \then ?Z}, !,
94 %checkModeOfDeltaDeleteObjects(WEBSERVICE ,?Z),
95 %prove(?X).
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96 /* WEB SERVICE IF-THEN -ELSE */
97 %invoke(WEBSERVICE ,?X) :-
98 ?X ~ ${\if ?Y \then ?Z \else ?W}, !,
99 %checkModeOfDeltaDeleteObjects(WEBSERVICE ,?Z),
100 %checkModeOfDeltaDeleteObjects(WEBSERVICE ,?W),
101 %prove(?X).
102
103 /* GOAL IF-THEN */
104 %invoke(GOAL ,?X) :-
105 ?X ~ ${\if ?Y \then ?Z}, !,
106 %checkModeOfDeltaDeleteObjects(GOAL ,?Z),
107 %prove(?X).
108 /* GOAL IF-THEN -ELSE */
109 %invoke(GOAL ,?X) :-
110 ?X ~ ${\if ?Y \then ?Z \else ?W}, !,
111 %checkModeOfDeltaDeleteObjects(GOAL ,?Z),
112 %checkModeOfDeltaDeleteObjects(GOAL ,?W),
113 %prove(?X).
114 /*---------------------------------------------------*/
115
116 /* (6) invokeChoose */
117 /* WEB SERVICE */
118 /* IF-THEN */
119 %invokeChoose(WEBSERVICE ,?X) :-
120 ?X ~ ${\if ?Y \then ?Z},!,
121 %checkModeOfDeltaDeleteObjects(WEBSERVICE ,?Z),
122
123 ?ifThenList = setof{?T | %prove(?Y), ?T=(?Y,?Z)},
124 ?ifThenList[length -> ?len]@\btp ,
125 %rand(1,?len ,? chosenNum),
126 %giveElementAt (?ifThenList ,?chosenNum ,(?Y2 ,?Z2)),
127 %prove(?Z2).
128 /* IF-THEN -ELSE */
129 %invokeChoose(WEBSERVICE ,?X) :-
130 ?X ~ ${\if ?Y \then ?Z \else ?W},!,
131 %checkModeOfDeltaDeleteObjects(WEBSERVICE ,?Z),
132 %checkModeOfDeltaDeleteObjects(WEBSERVICE ,?W),
133
134 \if (?Y)
135 \then (
136 ?ifThenList = setof{?T | %prove(?Y), ?T=(?Y,?Z)},
137 ?ifThenList[length -> ?len]@\btp ,
138 %rand(1,?len ,? chosenNum),
139 %giveElementAt (?ifThenList ,?chosenNum ,(?Y2 ,?Z2)),
140 %prove(?Z2))
141 \else (
142 ?ifThenList = setof{?T | %prove(?Y), ?T=(?Y,?W)},
143 ?ifThenList[length -> ?len]@\btp ,
144 %rand(1,?len ,? chosenNum),
145 %giveElementAt (?ifThenList ,?chosenNum ,(?Y2 ,?W2)),
146 %prove(?W2)).
147 /* GOAL */
148 /* IF-THEN */
149 %invokeChoose(GOAL ,?X) :-
150 ?X ~ ${\if ?Y \then ?Z}, !,
151 %checkModeOfDeltaDeleteObjects(GOAL ,?Z),
152
153 ?ifThenList = setof{?T | %prove(?Y), ?T=(?Y,?Z)},
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154 ?ifThenList[length -> ?len]@\btp ,
155 %rand(1,?len ,? chosenNum),
156 %giveElementAt (?ifThenList ,?chosenNum ,(?_Y2 ,?Z2)),
157 %prove(?Z2).
158 /* IF-THEN -ELSE */
159 %invokeChoose(GOAL ,?X) :-
160 ?X ~ ${\if ?Y \then ?Z \else ?W}, !,
161 %checkModeOfDeltaDeleteObjects(GOAL ,?Z),
162 %checkModeOfDeltaDeleteObjects(GOAL ,?W),
163
164 \if (?Y)
165 \then (
166 ?ifThenList = setof{?T | %prove(?Y), ?T=(?Y,?Z)},
167 ?ifThenList[length -> ?len]@\btp ,
168 %rand(1,?len ,? chosenNum),
169 %giveElementAt (?ifThenList ,?chosenNum ,(?_Y2 ,?Z2))

,
170 %prove(?Z2))
171 \else(
172 ?ifThenList = setof{?T | %prove(?Y), ?T=(?Y,?W)},
173 ?ifThenList[length -> ?len]@\btp ,
174 %rand(1,?len ,? chosenNum),
175 %giveElementAt (?ifThenList ,?chosenNum ,(?_Y2 ,?W2))

,
176 %prove(?W2)).
177 /*---------------------------------------------------*/
178
179 /* (7) mergeDeltaIntoWM */
180 %mergeDeltaIntoWM :-
181 ?_T1 =
182 setof{
183 ?A | ins_action (?A)@DeltaWM ,
184 %copyReifiedObjectIntoModule (?A, DeltaWM ,

WM)},
185 ?_T2 =
186 setof{
187 ?A | del_action (?A)@DeltaWM ,
188 %convertReifiedObjectModule (?A, DeltaWM ,

WM, ?A_new),
189 deleteall {? A_new@WM}},
190 ?_T3 =
191 setof{
192 ?objOld | update_action (?objOld , ?objNew)

@DeltaWM ,
193 deleteall {? objOld@WM},
194 %convertReifiedObjectModule (?objNew ,

DeltaWM , WM, ?newObject),
195 insert {? newObject@WM }}.
196 /*---------------------------------------------------*/
197
198 /* (8) deltaMakesAChange */
199 /* case 1 */
200 %deltaMakesAChange (?WM, ?DeltaWM) :-
201 ins_action (?A)@?DeltaWM ,
202 %convertReifiedObjectModule (?A, ?DeltaWM , ?WM, ?A_new),
203 \+ ?A_new@?WM.
204 /* case 2 */
205 %deltaMakesAChange (?WM, ?DeltaWM) :-
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206 del_action (?A)@?DeltaWM ,
207 %convertReifiedObjectModule (?A, ?DeltaWM , ?WM, ?A_new),
208 ?A_new@?WM.
209 /* case 3 */
210 %deltaMakesAChange (?WM, ?DeltaWM) :-
211 update_action (?objOld ,? objNew)@?DeltaWM ,
212 %convertReifiedObjectModule (?objNew , ?DeltaWM , ?WM, ?

newObject),
213 \+ ?newObject@?WM.
214 /*---------------------------------------------------*/
215
216 /* (9) contradictory */
217 /* case 1 */
218 %contradictory (?_WM , ?DeltaWM) :-
219 ins_action (?A1)@?DeltaWM ,
220 del_action (?A2)@?DeltaWM ,
221 %contained (?X1 ,?A1),
222 %contained (?X2 ,?A2),
223 ?X1 = ?X2, !.
224 /* case 2 */
225 %contradictory (?WM, ?DeltaWM) :-
226 del_action (?A)@?DeltaWM ,
227 %convertReifiedObjectModule (?A, ?DeltaWM , ?WM, ?A_new),
228 \+ ?A_new@?WM.
229 /* case 3 */
230 %contradictory (?WM, ?DeltaWM) :-
231 update_action (?objOld ,? objNew)@?DeltaWM ,
232 \+ ?objOld@?WM.
233 // We should also check if two insertion of a same object/value

are done.
234 /*---------------------------------------------------*/
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Library Predicates

Listing 7.3: Library Predicates
1 /*** Generated by Visual Semantic Choreography on 3/30/2017

8:17:15 PM ***/
2
3 /*---------------------------------------------------*/
4 // (1) preProcessCheckings
5 // (2) importOntology
6 // (3) insertGoalPre
7 // (4) proveGoalPost
8 // (5) prove
9 // (6) delta Actions
10 // (7) convertReifiedObjectModule
11 // (8) copyReifiedObjectIntoModule
12 // (9) extractConcepts
13 // (10) extractPredicates
14 // (11) filterOutPredicates
15 // (12) isNotFrame
16 // (13) checkUsageOfMembershipOperatorInDeltaDelete
17 /*---------------------------------------------------*/
18
19 /* (1) preProcessCheckings */
20 %preProcessCheckings (?goal ,?WS) :-
21 %checkUsageOfMembershipOperatorInDeltaDelete (?goal),
22 %checkUsageOfMembershipOperatorInDeltaDelete (?WS),
23 %preProcessCheckModesForGoalPre (?goal),
24 %preProcessCheckModes(GOAL ,?goal),
25 %preProcessCheckModes(WEBSERVICE ,?WS).
26 /*---------------------------------------------------*/
27
28 /* (2) importOntology */
29 %importOntology (?X,? module) :-
30 ?fileLocation = ?X.importOntology ,
31 add{? fileLocation >> ?module }.
32 /*---------------------------------------------------*/
33
34 /* (3) insertGoalPre */
35 %insertGoalPre (?goal ,? newModuleName) :-
36 ?_C = ?goal.capability , ?_C = (?_pre , ?_post), ?_pre ~ $

{’->’(pre ,(? GoalPre))@main},
37 %copyReifiedObjectIntoModule (?GoalPre , main , ?

newModuleName).
38 /*---------------------------------------------------*/
39
40 /* (4) proveGoalPost */
41 %proveGoalPost (?goal) :-
42 ?_C = ?goal.capability , ?_C = (?_pre , ?_post), ?_post ~ $

{’->’(post ,(? GoalPost))@main},
43 //? goal[post -> ?GoalPost],
44 %convertReifiedObjectModule (?GoalPost , main , WM, ?

newGoalPost),
45 %prove(? newGoalPost).
46 /*---------------------------------------------------*/
47
48 /* (5) prove */
49 /* AND */
50 %prove(?X) :-
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51 ?X = (?Left , ?Right), !,
52 %prove(?Left),%prove(?Right).
53 /* OR */
54 %prove(?X) :-
55 ?X = (?Left; ?Right), !,
56 (%prove(?Left); %prove(?Right)).
57 /* NOT */
58 %prove(?X) :-
59 ?X = (\+ ?G), !,
60 \+ %prove(?G).
61 /* ATOM */
62 %prove(?X) :- ?X.
63 /*---------------------------------------------------*/
64
65 /* (6) delta Actions */
66 /* deltaInsert */
67 %deltaInsert (?obj) :-
68 ?action = ${ins_action (?obj)},
69 %copyReifiedObjectIntoModule (?action , main , DeltaWM).
70 /* deltaDelete */
71 %deltaDelete (?obj) :-
72 ?action = ${del_action (?obj)},
73 %copyReifiedObjectIntoModule (?action , main , DeltaWM).
74 /* deltaUpdate: type A */
75 %deltaUpdate (?objOld , ?objNew) :-
76 %convertReifiedObjectModule (?objOld , main , WM, ?oldObject

),
77 \if (? oldObject) // if the specified object already

exists in WM
78 \then (
79 %convertReifiedObjectModule (?objNew , main ,

DeltaWM , ?newObject),
80 ?action = ${update_action (?oldObject , ?newObject)

},
81 %convertReifiedObjectModule (?action , main ,

DeltaWM , ?newAction),
82 insert {? newAction@DeltaWM }) // then put update

action into DeltaWM
83 \else \false.
84 /* deltaUpdate: type B */
85 %deltaUpdate (?obj , ?attr , ?oldVal , ?newVal) :-
86 %convertReifiedObjectModule(${?obj[?attr ->?oldVal]}, main

, WM, ?ObjectOld),
87 %convertReifiedObjectModule(${?obj[?attr ->?newVal]}, main

, WM, ?ObjectNew),
88 ?action = ${update_action (?ObjectOld , ?ObjectNew)},
89 %convertReifiedObjectModule (?action , main , DeltaWM , ?

newAction),
90 insert {? newAction@DeltaWM }.
91 /*---------------------------------------------------*/
92
93 /* (7) convertReifiedObjectModule */
94 %convertReifiedObjectModule (? reifiedObject , ?sourceModule , ?

targetModule , ?convertedReifiedObject) :-
95 ?S = ?sourceModule , name(?S,? sourceModuleName)@\prolog ,
96 ?T = ?targetModule , name(?T,? targetModuleName)@\prolog ,
97 ?reifiedObject =.. ?B,
98 \symbol[toType (?B) -> ?C]@\btp ,
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99 \symbol[concat ([?C,’.’]) -> ?CC]@\btp ,
100 name(?CC ,?F)@\prolog ,
101 %replaceAll (?F,? sourceModuleName ,? targetModuleName ,?G),
102 string (?G)[readAll (?I)]@\parse ,
103 ?I[ith(1) -> ?J]@\btp ,
104 //?J =.. [?_,?K,?_], in the Last testef Ergo version
105 ?J = code(?K,?_)@\prolog ,
106 ?convertedReifiedObject =.. ?K.
107 /*---------------------------------------------------*/
108
109 /* (8) copyReifiedObjectIntoModule */
110 %copyReifiedObjectIntoModule (? reifiedObject , ?sourceModule , ?

targetModule) :-
111 ?S = ?sourceModule , name(?S,? sourceModuleName)@\prolog ,
112 ?T = ?targetModule , name(?T,? targetModuleName)@\prolog ,
113 ?reifiedObject =.. ?B,
114 \symbol[toType (?B) -> ?C]@\btp ,
115 \symbol[concat ([?C,’.’]) -> ?CC]@\btp ,
116 name(?CC ,?F)@\prolog ,
117 %replaceAll (?F,? sourceModuleName ,? targetModuleName ,?G),
118 string (?G)[readAll (?I)]@\parse ,
119 ?I[ith(1) -> ?J]@\btp ,
120 //?J =.. [?_,?K,?_], in the Last testef Ergo version
121 ?J = code(?K,?_)@\prolog ,
122 ?L =.. ?K,
123 insert {?L}.
124 /*---------------------------------------------------*/
125
126 /* (9) extractConcepts */
127 %extractConcepts ([?H|?T], ?LstIn , ?LstOut) :- ?H != 58, %

extractConcepts (?T, ?LstIn , ?LstOut).
128
129 %extractConcepts ([58|? Rest], ?LstIn , ?LstOut) :-
130 %readTheTerm (?Rest , "", ?term , ?remainder),
131 \symbol[toType (?term) -> ?termSym]@\btp ,
132 ?termItem = [? termSym],
133 ?LstIn[append (? termItem) -> ?LstNew]@\btp ,
134 %extractConcepts (?remainder , ?LstNew , ?LstOut).
135
136 %extractConcepts ([], ?LstIn , ?LstOut) :- ?LstOut = ?LstIn.
137 /*---------------------------------------------------*/
138
139 /* (10) extractPredicates */
140 %extractPredicates ([?H|?T], ?LstIn , ?LstOut) :- ?H != 123, %

extractPredicates (?T, ?LstIn , ?LstOut).
141
142 %extractPredicates ([123|? Rest], ?LstIn , ?LstOut) :-
143 %readTheTerm (?Rest , ""^^\ charlist , ?term , ?remainder),
144 ?termItem = [?term],
145 ?LstIn[append (? termItem) -> ?LstNew]@\btp ,
146 %extractPredicates (?remainder , ?LstNew , ?LstOut).
147
148 %extractPredicates ([], ?LstIn , ?LstOut) :- ?LstOut = ?LstIn.
149 /*---------------------------------------------------*/
150
151 /* (11) filterOutPredicates */
152 %filterOutPredicates ([?H|?T], ?LstIn , ?LstOut) :-
153 %isNotFrame (?H),
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154 %removeParenthesis (?H,[],? Term),
155 \symbol[toType (?Term) -> ?TermSym]@\btp ,
156 ?PreName = [? TermSym],
157 ?LstIn[append (? PreName) -> ?LstNew]@\btp ,
158 %filterOutPredicates (?T, ?LstNew , ?LstOut).
159
160 %filterOutPredicates ([?H|?T], ?LstIn , ?LstOut) :-
161 (\+ %isNotFrame (?H)),
162 %filterOutPredicates (?T, ?LstIn , ?LstOut).
163
164 %filterOutPredicates ([], ?LstIn , ?LstOut) :- ?LstOut = ?LstIn.
165 /*---------------------------------------------------*/
166
167 /* (12) isNotFrame */
168 %isNotFrame ([?H|?T]) :- (?H != 58, ?H != 91), %isNotFrame (?T).
169 %isNotFrame ([]).
170
171 /* (13) checkUsageOfMembershipOperatorInDeltaDelete */
172 %checkUsageOfMembershipOperatorInDeltaDelete (?X) :-
173 ?_RHSs = setof{ ?Z | ?X[rule(? _gRule):ForallRule -> ?

_ruleBody], ?_ruleBody ~ ${\if ?_Y \then ?Z}},
174 %checkAllRHS (?X,?_RHSs).
175
176 %checkAllRHS (?gOrWS ,[]).
177 %checkAllRHS (?gOrWS ,[?H|?T]) :-
178 %checkRHS (?gOrWS ,?H),
179 %checkAllRHS (?gOrWS ,?T).
180
181 %checkRHS (?gOrWS ,?Z) :-
182 \if (?Z ~ (?Z1 ,?Z2))
183 \then (
184 %checkRHS (?gOrWS ,?Z1),
185 %checkRHS (?gOrWS ,?Z2))
186 \else
187 (% checkExistanceOfColon (?gOrWS ,?Z)).
188
189 %checkExistanceOfColon (?gOrWS ,?Z) :-
190 ?Z =.. [?X1|?X2],
191 \if (\+ ?X1 = ’%hilog ’( deltaDelete ,?_M))
192 \then \true
193 \else (
194 \if (\+ %checkMembershipOperator (?X2))
195 \then (% watchln([’Illegal deltaDelete. Do not use

: in deltaDelete of ’-?gOrWS]), \false)
196 \else \true ).
197
198 %checkMembershipOperator ([]).
199 %checkMembershipOperator ([?H|?T]) :-
200 %reformatToString (?H, ?HStr),
201 %noColonExists (?HStr),
202 %checkMembershipOperator (?T).
203
204 %noColonExists ([]).
205 %noColonExists ([?H|?T]) :- ?H != 58, %noColonExists (?T).
206 /*---------------------------------------------------*/
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Mode Checking Predicates

Listing 7.4: Mode Checking Predicates
1 /*** Generated by Visual Semantic Choreography on 3/30/2017

8:17:15 PM ***/
2
3 /*---------------------------------------------------*/
4
5 /* preProcessCheckModesForGoalPre */
6 %preProcessCheckModesForGoalPre (?goal) :-
7 ?_C = myGoal.capability , ?_C = (?_pre , ?_post), ?_pre ~ $

{’->’(pre ,(? GoalPre))@main},
8 ?Z = ?GoalPre ,
9 //? goal[pre ->?Z],
10 %reformatToString (?Z, ?ZStr),
11 %extractConcepts (?ZStr , [], ?writeList),
12
13 %extractPredicates (?ZStr , [], ?termList),
14 %filterOutPredicates (?termList , [], ?preWriteList),
15
16 \if (\+ %checkGoalPreModes(FRAME ,? writeList))
17 \then (writeln(’Error: Illegal access mode of a FRAME in

’-?goal -’PRECONDITION .’)@\prolog ,!,\false),
18
19 \if (\+ %checkGoalPreModes(PREDICATE ,? preWriteList))
20 \then (writeln(’Error: Illegal access mode of a PREDICATE

in ’-?goal -’PRECONDITION .’)@\prolog ,!,\false).
21
22 %checkGoalPreModes (?fOrP ,[]).
23
24 %checkGoalPreModes (?fOrP ,[?F|?R]):-
25 \if (\+ %checkGoalPreMode (?fOrP ,?F))
26 \then (writeln([’Violating ’-?fOrP -’in GOAL PRECONDITION

is ’-?F])@\prolog , !, \false),
27 %checkGoalPreModes (?fOrP ,?R).
28
29 %checkGoalPreMode (?fOrP ,?F) :-
30 (?F:In \or
31 ?F:Shared), !.
32 /*---------------------------------------------------*/
33
34 /* preProcessCheckModes */
35 %preProcessCheckModes (?gOrWs ,?X) :-
36 ?allRuleBodies = setof{ ?ruleBody |
37 (?X[? ruleName (?tag):ForallRule -> ?ruleBody ];
38 ?X[? ruleName (?tag):ChooseRule -> ?ruleBody ])},
39 %checkAll (?gOrWs ,? allRuleBodies).
40
41 %checkAll (?gOrWs ,[]) :- !.
42 %checkAll (?gOrWs ,[?H|?T]) :-
43 %check(?gOrWs ,?H),
44 %checkAll (?gOrWs ,?T).
45
46 /* IF-THEN */
47 %check(?gOrWs ,?X) :-
48 ?X ~ ${\if ?Y \then ?Z}, !,
49
50 // ?Y
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51 %reformatToString (?Y, ?YStr),
52 %extractConcepts (?YStr , [], ?conceptsInY),
53 %extractPredicates (?YStr , [], ?termList1),
54 %filterOutPredicates (?termList1 , [], ?predicatesInY),
55
56 \if (\+ %checkAllFramesModes (?gOrWs ,READ ,? conceptsInY))
57 \then (writeln([’Error: Illegal access mode of a FRAME

for a rule LHS in ’-?gOrWs])@\prolog ,!,\false),
58
59 \if (\+ %checkAllPredicatesModes (?gOrWs ,READ ,?

predicatesInY))
60 \then (writeln([’Error: Illegal access mode of a

PREDICATE for a rule LHS in ’-?gOrWs])@\prolog ,!,\
false),

61
62 // ?Z
63 %decomposeRHS (?Z, [], ?allFsOrPs),
64 %reformatToString (?allFsOrPs , ?allFsOrPsStr),
65 %extractConcepts (? allFsOrPsStr , [], ?conceptsInZ),
66 %extractPredicates (? allFsOrPsStr , [], ?temp),
67 %filterOutPredicates (?temp , [], ?predicatesInZ),
68
69 \if (\+ %checkAllFramesModes (?gOrWs ,WRITE ,? conceptsInZ))
70 \then (writeln([’Error: Illegal access mode of a FRAME

for a rule RHS in ’-?gOrWs])@\prolog ,!,\false),
71
72 \if (\+ %checkAllPredicatesModes (?gOrWs ,WRITE ,?

predicatesInZ))
73 \then (writeln([’Error: Illegal access mode of a

PREDICATE for a rule RHS in ’-?gOrWs])@\prolog ,!,\
false).

74
75 /*---------------------------------------------------*/
76
77 /* IF-THEN -ELSE */
78 %check(?gOrWs ,?X) :-
79 ?X ~ ${\if ?Y \then ?Z \else ?W}, !,
80
81 // ?Y
82 %reformatToString (?Y, ?YStr),
83 %extractConcepts (?YStr , [], ?conceptsInY),
84 %extractPredicates (?YStr , [], ?termList1),
85 %filterOutPredicates (?termList1 , [], ?predicatesInY),
86
87 \if (\+ %checkAllFramesModes (?gOrWs ,READ ,? conceptsInY))
88 \then (writeln([’Error: Illegal access mode of a FRAME

for a rule LHS in ’-?gOrWs])@\prolog ,!,\false),
89
90 \if (\+ %checkAllPredicatesModes (?gOrWs ,READ ,?

predicatesInY))
91 \then (writeln([’Error: Illegal access mode of a

PREDICATE for a rule LHS in ’-?gOrWs])@\prolog ,!,\
false),

92
93 // ?Z
94 %decomposeRHS (?Z, [], ?allFsOrPs),
95 %reformatToString (?allFsOrPs , ?allFsOrPsStr),
96 %extractConcepts (? allFsOrPsStr , [], ?conceptsInZ),
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97 %extractPredicates (? allFsOrPsStr , [], ?temp),
98 %filterOutPredicates (?temp , [], ?predicatesInZ),
99
100 \if (\+ %checkAllFramesModes (?gOrWs ,WRITE ,? conceptsInZ))
101 \then (writeln([’Error: Illegal access mode of a FRAME

for a rule RHS in ’-?gOrWs])@\prolog ,!,\false),
102
103 \if (\+ %checkAllPredicatesModes (?gOrWs ,WRITE ,?

predicatesInZ))
104 \then (writeln([’Error: Illegal access mode of a

PREDICATE for a rule RHS in ’-?gOrWs])@\prolog ,!,\
false),

105
106 // ?W
107 %decomposeRHS (?W, [], ?W_allFsOrPs),
108 %reformatToString (? W_allFsOrPs , ?W_allFsOrPsStr),
109 %extractConcepts (? W_allFsOrPsStr , [], ?conceptsInW),
110 %extractPredicates (? W_allFsOrPsStr , [], ?W_temp),
111 %filterOutPredicates (?W_temp , [], ?predicatesInW),
112
113 \if (\+ %checkAllFramesModes (?gOrWs ,WRITE ,? conceptsInW))
114 \then (writeln([’Error: Illegal access mode of a FRAME

for a rule RHS in ’-?gOrWs])@\prolog ,!,\false),
115
116 \if (\+ %checkAllPredicatesModes (?gOrWs ,WRITE ,?

predicatesInW))
117 \then (writeln([’Error: Illegal access mode of a

PREDICATE for a rule RHS in ’-?gOrWs])@\prolog ,!,\
false).

118
119
120 %decomposeRHS (?X, ?LstIn , ?LstOut) :-
121 \if (?X ~ (?X1 ,?X2))
122 \then (
123 %decomposeRHS (?X1 ,?LstIn , ?LstTemp1),
124 %decomposeRHS (?X2 ,?LstIn , ?LstTemp2),
125 \list[append ([? LstTemp1 ,? LstTemp2 ]) ->?LstOut]@\

btp)
126 \else
127 (% extractFrameOrPredicateFromDeltaAction (?X,?fOrP

),
128 \list[append ([?LstIn ,[? fOrP ]]) ->?LstOut]@\btp).
129
130 %extractFrameOrPredicateFromDeltaAction (?X,? FrameOrPredicate) :-
131 ((?X ~ ${% deltaInsert (?T)});
132 (?X ~ ${% deltaDelete (?T)});
133 (?X ~ ${% deltaUpdate (?T)})),
134 ?FrameOrPredicate = ?T.
135 /*---------------------------------------------------*/
136
137 /* checkModeOfDeltaDeleteObjects */
138 %checkModeOfDeltaDeleteObjects (?gOrWs , ?Z) :-
139 \if (?Z ~ (?Z1 ,?Z2))
140 \then (
141 %checkModeOfDeltaDeleteObjects (?gOrWs , ?Z1),
142 %checkModeOfDeltaDeleteObjects (?gOrWs , ?Z2)
143 )
144 \else
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145 (% checkModeOfDeltaDeleteObject (?gOrWs , ?Z)).
146
147 %checkModeOfDeltaDeleteObject (?gOrWs , ?Z) :-
148 ?Z =.. [?X1|?X2],
149 \if (\+ ?X1 = ’%hilog ’( deltaDelete ,?_M))
150 \then \true
151 \else (
152 %reformatToString (?X2, ?X2Str),
153 %extractConceptsForDeltaDelete (?X2Str , [], ?

writeList),
154 \if (\+ %checkModesDeltaDelete (?gOrWs ,WRITE ,?

writeList))
155 \then (% watchln([’Error: Illegal access mode in

deltaDelete of ’-?gOrWs]) ,!,\false)
156 ).
157
158 %checkModesDeltaDelete (?gOrWs ,WRITE ,[]).
159 %checkModesDeltaDelete (?gOrWs ,WRITE ,[?H|?T]) :-
160 %checkModeDeltaDelete (?gOrWs ,WRITE ,?H),
161 %checkModesDeltaDelete (?gOrWs ,WRITE ,?T).
162
163 //Frame
164 %checkModeDeltaDelete(GOAL ,WRITE ,?H) :-
165 (?H:? Concept)@WM ,? Concept:Mode ,
166 (? Concept:In \or
167 ?Concept:Shared), !.
168 // Predicate
169 %checkModeDeltaDelete(GOAL ,WRITE ,?H) :-
170 ?H:UserPredicate ,
171 (?H:In \or
172 ?H:Shared), !.
173
174 //Frame
175 %checkModeDeltaDelete(WEBSERVICE ,WRITE ,?H) :-
176 (?H:? Concept)@WM ,? Concept:Mode ,
177 (? Concept:Controlled \or
178 ?Concept:Out \or
179 ?Concept:Shared), !.
180 // Predicate
181 %checkModeDeltaDelete(WEBSERVICE ,WRITE ,?H) :-
182 ?H:UserPredicate ,
183 (?H:Controlled \or
184 ?H:Out \or
185 ?H:Shared), !.
186
187 %extractConceptsForDeltaDelete ([?H|?T], ?LstIn , ?LstOut) :-
188 ?H != 123,
189 %extractConceptsForDeltaDelete (?T, ?LstIn , ?LstOut).
190
191 %extractConceptsForDeltaDelete ([123|? Rest], ?LstIn , ?LstOut) :-
192 %readTheTermForDeltaDelete (?Rest , ""^^\ charlist , ?term , ?

remainder),
193 \symbol[toType (?term) -> ?termSym]@\btp ,
194 ?termItem = [? termSym],
195 ?LstIn[append (? termItem) -> ?LstNew]@\btp ,
196 %extractConceptsForDeltaDelete (?remainder , ?LstNew , ?

LstOut).
197
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198 %extractConceptsForDeltaDelete ([], ?LstIn , ?LstOut) :- ?LstOut =
?LstIn.

199
200 %readTheTermForDeltaDelete ([?H|?Rest], ?termIn , ?termOut , ?

remainder) :-
201 (?H != 91, ?H != 40, ?H != 64, ?H != 58), // [ ( @ :
202 ?HS = [?H],
203 ?termIn[concat (?HS) -> ?termIn2]@\btp ,
204 %readTheTermForDeltaDelete (?Rest , ?termIn2 , ?termOut , ?

remainder).
205
206 %readTheTermForDeltaDelete ([?H|?Rest], ?termIn , ?termOut , ?

remainder) :-
207 (?H = 91 ; ?H = 58 ; ?H = 40 ; ?H = 64),
208 ?termOut = ?termIn , ?remainder = ?Rest.
209
210 %readTheTermForDeltaDelete ([], ?termIn , ?termOut , ?remainder) :-

?termOut = ?termIn , ?remainder = [].
211 /*---------------------------------------------------*/
212
213 /* checkAllFramesModes */
214 %checkAllFramesModes (?gOrWS , ?reOrWr ,[]).
215
216 %checkAllFramesModes (?gOrWS , ?reOrWr ,[?F|?R]):-
217 %checkFrameMode (?gOrWS , ?reOrWr ,?F),
218 %checkAllFramesModes (?gOrWS , ?reOrWr ,?R).
219
220 %checkFrameMode(GOAL ,READ ,?F):-
221 ( ?F:In \or
222 ?F:Out \or
223 ?F:Static \or
224 ?F:Shared ), !.
225
226 %checkFrameMode(GOAL ,WRITE ,?F):-
227 (?F:In \or
228 ?F:Shared), !.
229
230 %checkFrameMode(GOAL ,READ ,?F):- writeln([’Illegal GOAL READ

action for ’,?F])@\prolog , !, \false.
231 %checkFrameMode(GOAL ,WRITE ,?F):- writeln([’Illegal GOAL WRITE

action for ’,?F])@\prolog , !, \false.
232
233 %checkFrameMode(WEBSERVICE ,READ ,?F):-
234 (?F:Controlled \or
235 ?F:In \or
236 ?F:Out \or
237 ?F:Static \or
238 ?F:Shared), !.
239 %checkFrameMode(WEBSERVICE ,WRITE ,?F):-
240 (?F:Controlled \or
241 ?F:Out \or
242 ?F:Shared), !.
243
244 %checkFrameMode(WEBSERVICE ,READ ,?F):- writeln([’Illegal

WEBSERVICE READ action for ’,?F])@\prolog , !, \false.
245 %checkFrameMode(WEBSERVICE ,WRITE ,?F):- writeln([’Illegal

WEBSERVICE WRITE action for ’,?F])@\prolog , !, \false.
246 /*---------------------------------------------------*/
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247
248 /* checkAllPredicatesModes */
249 %checkAllPredicatesModes (?gOrWS , ?reOrWr ,[]).
250
251 %checkAllPredicatesModes (?gOrWS , ?reOrWr ,[?F|?R]):-
252 %checkPredicateMode (?gOrWS , ?reOrWr ,?F),
253 %checkAllPredicatesModes (?gOrWS , ?reOrWr ,?R).
254
255 %checkPredicateMode(GOAL ,READ ,?F):-
256 (?F:In \or
257 ?F:Out \or
258 ?F:Static \or
259 ?F:Shared), !.
260 %checkPredicateMode(GOAL ,WRITE ,?F):-
261 (?F:In \or
262 ?F:Shared), !.
263
264 %checkPredicateMode(GOAL ,READ ,?F):- writeln([’Illegal GOAL

READ action for ’,?F])@\prolog , !, \false.
265 %checkPredicateMode(GOAL ,WRITE ,?F):- writeln([’Illegal GOAL WRITE

action for ’,?F])@\prolog , !, \false.
266
267 %checkPredicateMode(WEBSERVICE ,READ ,?F):-
268 (?F:Controlled \or
269 ?F:In \or
270 ?F:Out \or
271 ?F:Static \or
272 ?F:Shared), !.
273 %checkPredicateMode(WEBSERVICE ,WRITE ,?F):-
274 (?F:Controlled \or
275 ?F:Out \or
276 ?F:Shared), !.
277
278 %checkPredicateMode(WEBSERVICE ,READ ,?F):- writeln([’Illegal

WEBSERVICE READ action for ’,?F])@\prolog , !, \false.
279 %checkPredicateMode(WEBSERVICE ,WRITE ,?F):- writeln([’Illegal

WEBSERVICE WRITE action for ’,?F])@\prolog , !, \false.
280 /*---------------------------------------------------*/
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Utility Predicates

Listing 7.5: Utility Predicates
1 /*** Generated by Visual Semantic Choreography on 3/30/2017

8:17:15 PM ***/
2
3 dg.
4
5 /* prepareModule */
6 %prepareModule (? module) :-
7 \if (\+ isloaded {? module })
8 \then newmodule {? module},
9 //% checkModule (? module),
10 %eraseModule (? module).
11 /*---------------------------------------------------*/
12
13 /* initializations */
14 %initializations :- %initializeRandom.
15 /*---------------------------------------------------*/
16
17 /* initializeRandom */
18 %initializeRandom :- datime_setrand@\prolog(random).
19 /*---------------------------------------------------*/
20
21 /* rand */
22 %rand(?L,?U,?R) :- ?UU \is ?U+1, random (?L,?UU ,?R)@\prologall(

random). //both inclusive
23 /*---------------------------------------------------*/
24
25 /* giveElementAt */
26 %giveElementAt (?L,?n,? elementAt) :- nth0(?n,?L,? elementAt)@\

prologall(lists).
27 /*---------------------------------------------------*/
28
29 /* watch(ln) */
30 %watchln () :- \if dg \then writeln(’’)@\prolog.
31 %watch(?X) :- \if dg \then write(?X)@\prolog.
32 %watchln (?X) :- \if dg \then writeln (?X)@\prolog.
33 /*---------------------------------------------------*/
34
35 /* debug */
36 %debug(?X) :- \if (?X == on) \then (insert{dg},writeln(’Debug is

ON.’)@\prolog)
37 \else \if (?X == off) \then (deleteall{

dg},writeln(’Debug is OFF.’)@\prolog
).

38 /*---------------------------------------------------*/
39
40 /* /* checkModule
41 %checkModule (?M) :- isloaded {?M}, !.
42 %checkModule (?M) :- newmodule {?M}. */
43 /*---------------------------------------------------*/
44
45 /* eraseModule */
46 %eraseModule (?M) :- deleteall {?_(?_)@?M}, deleteall {?_(?_,?_)@?M

}, deleteall {?_[?_ -> ?_]@?M}, deleteall {?_:?_[?_ -> ?_]@?M},
deleteall {?_:?_@?M} .

47 /*---------------------------------------------------*/
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48
49 /* makeFileAddress */
50 %makeFileAddress (?dir ,?name ,? fileAddress) :- \symbol[concat ([?dir

,?name]) ->?fileAddress]@\basetype.
51 /*---------------------------------------------------*/
52
53 /* replaceAll */
54 /* Replaces a term with another in a string */
55 %replaceAll ([],? _Pattern ,?_Replace ,[]) :- !.
56
57 %replaceAll (?OldString ,?Pattern ,?Replace ,? NewString):-
58 %startsWith (?OldString ,?Pattern ,?Rest),!,
59 %replaceAll (?Rest ,?Pattern ,?Replace ,? TailNewString),
60 ?Replace[append (? TailNewString) -> ?NewString]@\btp.
61
62 %replaceAll ([?H|? TailOldString ],?Pattern ,?Replace ,[?H|?

TailNewString ]):-
63 %replaceAll (? TailOldString ,?Pattern ,?Replace ,?

TailNewString).
64 /*---------------------------------------------------*/
65
66 /* startsWith */
67 %startsWith (?OldString ,[],? OldString2):- ?OldString2 = ?OldString

, !.
68 %startsWith ([?H|? TOldString ],[?H|?T],?Rest):- !, %startsWith (?

TOldString ,?T,?Rest).
69 /*---------------------------------------------------*/
70
71 /* contained */
72 %contained (?X, ?A) :- ?X = ?A.
73 %contained (?X, ?A) :- ?A = (?A1, ?_Rest), ?X = ?A1.
74 %contained (?X, ?A) :- ?A = (?_A1 , ?Rest), %contained (?X, ?Rest).
75 /*---------------------------------------------------*/
76
77 /* showModule */
78 %showModule (?M) :-
79 %watchln(’--------------------------------------’),
80 %watch(’In ’),
81 %watchln (?M),
82 %watchln(’--------------------------------------’),
83 ?_L1 = setof{?X |
84 ?X:?C[?Y -> ?Z]@?M,
85 (?C != \callable),
86 %immediateClassInModule (?X,?C,?M),
87 %watch(?X),%watch(’:’) ,%watch(?C),%watch(’[’) ,%

watch(?Y),%watch(’->’) ,%watch(?Z),%watchln
(’]’)

88 },
89 // ?_L2 = setof{?X |
90 // ?X@?M,% watchln (?X)
91 // },
92 ?_L3 = setof{?X |
93 ?X(?Y)@?M,%watch(?X),%watch(’(’) ,%watch(?Y),%

watchln(’) ’)
94 },
95 ?_L4 = setof{?X |
96 ?X(?Y,?Z)@?M,%watch(?X),%watch(’(’) ,%watch(?Y),%

watch(’,’) ,%watch(?Z),%watchln(’) ’)
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97 },
98 ?_L5 = setof{?X |
99 ?X()@?M,% watchln (?X)
100 },
101 ?_L6 = setof{?X |
102 ?X(?Y,?Z,?W)@?M,%watch(?X),%watch(’(’) ,%watch(?Y)

,%watch(’,’) ,%watch(?Z),%watch(’,’) ,%watch(?W)
,%watchln(’) ’)

103 } //.
104 ,
105 %pause(?_).
106 /*---------------------------------------------------*/
107
108 /* pause */
109 %pause() :- get(?_X)@\prolog.
110 %pause(?X) :- get(?X)@\prolog.
111 /*---------------------------------------------------*/
112
113 /* immediateClassInModule */
114 %immediateClassInModule (?obj ,?class ,?Mod) :-
115 ?obj:? class@?Mod ,
116 ?class != \object ,
117 ?class != \symbol ,
118 ?class != (?_Y;?_Z).
119 /*---------------------------------------------------*/
120
121 /* removeParenthesis */
122 // 40 is (
123 %removeParenthesis ([?H|?T], ?In, ?Out) :-
124 ?H != 40,
125 ?HS = [?H],
126 ?In[concat (?HS) -> ?New]@\btp ,
127 %removeParenthesis (?T, ?New , ?Out).
128
129 %removeParenthesis ([], ?In, ?Out) :- ?Out = ?In.
130 %removeParenthesis ([40|?T], ?In, ?Out) :- ?Out = ?In.
131 /*---------------------------------------------------*/
132
133 /* report */
134 %report (?item) :- \true.
135 /*---------------------------------------------------*/
136
137 %testMe ([]).
138 %testMe ([?H|?T]) :- ?H = 32, !, %testMe (?T).
139 %testMe (?X) :- write(?X)@\prolog.
140
141 /* readTheTerm */
142 // 92 is \, 43 is +, 64 is @, 32 is [space]
143 %readTheTerm ([92|? Rest], ?termIn , ?termOut , ?remainder) :- !,%

readTheTerm (?Rest , ?termIn , ?termOut , ?remainder).
144 %readTheTerm ([43|? Rest], ?termIn , ?termOut , ?remainder) :- !,%

readTheTerm (?Rest , ?termIn , ?termOut , ?remainder).
145 %readTheTerm ([32|? Rest], ?termIn , ?termOut , ?remainder) :- !,%

readTheTerm (?Rest , ?termIn , ?termOut , ?remainder).
146
147 %readTheTerm ([?H|?Rest], ?termIn , ?termOut , ?remainder) :-
148 ?H != 64,
149 ?HS = [?H],
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150 ?termIn[concat (?HS) -> ?termIn2]@\btp ,
151 %readTheTerm (?Rest , ?termIn2 , ?termOut , ?remainder).
152
153 %readTheTerm ([64|? Rest], ?termIn , ?termOut , ?remainder) :- ?

termOut = ?termIn , ?remainder = ?Rest.
154 /*---------------------------------------------------*/
155
156 /* reformatToString */
157 %reformatToString (?In, ?Str) :-
158 \symbol[toType (?In) -> ?A]@\btp ,
159 name(?A,?Str)@\prolog.
160 /*---------------------------------------------------*/
161
162 ////////////////////////////
163 /* %readTheTerm2 ([?H|?Rest], ?termIn , ?termOut , ?remainder) :-
164 ?H != 64,
165 ?HS = [?H],
166 ?termIn[concat (?HS) -> ?termIn2]@\btp ,
167 %readTheTerm2 (?Rest , ?termIn2 , ?termOut , ?remainder).
168
169 %readTheTerm2 ([64|? Rest], ?termIn , ?termOut , ?remainder) :- ?

termOut = ?termIn , ?remainder = ?Rest. */
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Appendix F: More choreography specification examples

Example 1: Semantic authentication

Service requesters usually are asked to be authenticated by online services before

being able to utilize them. Authentication information can be asked at the beginning,

in the middle or in last steps of the service consumption process. Here we present a

semantic choreography for the authentication process. If the service requester (goal)

and service provider (Web Service) use the same terminology, the requester can pass

authentication information in a choreography to the Web Service. Listings 7.6 and 7.7

depict the semantic choreography specifications of the goal and the Web Service re-

spectively.

Listing 7.6: Goal choreography specification for semantic authentication
1 // Local ontology (will be stored on a separate file after

deployed)
2 /*
3 myUserName(’Riccardo ’).
4 myPassword (’98765’).
5 */
6 myGoal:Goal.
7 myGoal[
8 importOntology -> ’../Auth/GoalsOntology.flr ’,
9
10 capability -> ${
11 pre -> ${
12 ar:AuthenticationRequest[UserName ->?UN, Password ->?PW],
13 AuthenticationRequest(UserName ,?UN),
14 AuthenticationRequest(Password ,?PW)
15 },
16
17 post -> ${
18 ?AV:AuthenticationValidation [?X->?Y] \or
19 AuthenticationValidation () \or
20 AuthenticationValidation (?Z) \or
21 AuthenticationValidation (?W,?S)
22 }
23 },
24 gRule(R01):ForallRule -> ${
25 \if (
26 ?X:QuestionByWS[UserName ->?Y]@WM ,
27 myUserName (?UN)@WM
28 )

134



29 \then (
30 %deltaInsert(${A:AnswerByGoal[UserName ->?UN]})
31 )
32 },
33 gRule(R02):ForallRule -> ${
34 \if (
35 ?X:QuestionByWS[Password ->?Y]@WM ,
36 myPassword (?PW)@WM
37 )
38 \then (
39 %deltaInsert(${A:AnswerByGoal[Password ->?PW]})
40 )
41 },
42 gRule(R03):ForallRule -> ${
43 \if (
44 QuestionByWS(UserName ,?X)@WM ,
45 myUserName (?UN)@WM
46 )
47 \then (
48 %deltaInsert(${AnswerByGoal(UserName ,?UN)})
49 )
50 },
51 gRule(R04):ForallRule -> ${
52 \if (
53 QuestionByWS(Password ,?X)@WM ,
54 myPassword (?PW)@WM
55 )
56 \then (
57 %deltaInsert(${AnswerByGoal(Password ,?PW)})
58 )
59 }
60 ].

Listing 7.7: Web Service choreography specification for semantic authentication
1 // Local ontology (will be stored on a separate file after

deployed)
2 /*
3 DB_UserName_Password(’PeterJM ’,’12345’).
4 DB_UserName_Password(’Angel83 ’,’112233’).
5 DB_UserName_Password(’Riccardo ’,’98765’).
6 DB_UserName_Password(’Agent007 ’,’7777777’).
7 */
8 AuthenticationService:WebService.
9 AuthenticationService[
10 importOntology -> ’../Auth/WebServicesOntology.flr ’,
11
12 capability -> ${
13 pre -> ${
14 ?AR:AuthenticationRequest [?X->?Y]
15 },
16
17 post -> ${
18 ?AV:AuthenticationValidation [?X->?Y]
19 }
20 },
21 wsRule(R01):ForallRule -> ${
22 \if (
23 (?AR:AuthenticationRequest [?X->?Y])@WM
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24 )
25 \then (
26 %deltaInsert(${Q:QuestionByWS[UserName ->_]}),
27 %deltaInsert(${Q:QuestionByWS[Password ->_]})
28 )
29 },
30 wsRule(R02):ForallRule -> ${
31 \if (
32 (?X:AnswerByGoal[UserName ->?UN])@WM ,
33 (?Y:AnswerByGoal[Password ->?PW])@WM ,
34 DB_UserName_Password (?UN ,?PW)@WM
35 )
36 \then (
37 %deltaInsert(${av:AuthenticationValidation[
38 UserName ->?UN, Password ->?PW]})
39 )
40 },
41 wsRule(R03):ForallRule -> ${
42 \if (
43 (?X:AnswerByGoal[UserName ->?UN])@WM ,
44 (?Y:AnswerByGoal[Password ->?PW])@WM ,
45 (\+ DB_UserName_Password (?UN ,?PW))@WM
46 )
47 \then (
48 %deltaInsert(${M:Message[
49 WS->’Incorrect username or password

.’]})
50 )
51 }
52 ].

In this example, precondition of the goal contains two presentations of the re-

quest: one in the form of the frame ar:AuthenticationRequest[UserName->?UN,

Password->?PW] and one in the form of the predicate pair AuthenticationRe-

quest(UserName,?UN), AuthenticationRequest(Password,?PW) . Also, the post-

condition can be satisfied in different ways. On the other side, the Web Service only

understands the requests in the form of frame. Similar to Flight Reservation Service,

the choreography is progressed through a semantic conversion between the goal and

Web Service.
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Example 2: Using utility predicates

A Web Service can offer some utility predicates to its requesters, so requesters

can utilize these predicates in their choreography specifications. The signature of the

predicate should be known to the requester at the time of writing specification. These

predicates can be imported into the common ontology with static access; so both the

Web Service and goal can utilize them. Here, we show the Flight Reservation Sys-

tem example utilizing the utility predicate %cheapestFlight to select the cheapest

roundtrip flight among the suggested ones. The predicate is defined as below in the

common ontology. It uses Flora-2 min operator to find the minimum value among the

values which are unified with ?priceTot:

%cheapestFlight(?price) :-

?price = min {?priceTot | tripChoice(?fl_dep,?fl_ret,?priceTot)@WM}.

Listings 7.8 and 7.9 contain the goal and Web Service choreography specifica-

tions respectively. The predicate %cheapestFlight is used in gRule(R01).

Listing 7.8: Goal choreography specification for flight reservation (using customized
utility predicates)

1 myGoal:Goal.
2 myGoal[
3 importOntology -> ’../ Flight/GoalsOntology.flr ’,
4 capability -> ${
5 pre -> ${
6 myRequest:RequestFlight[
7 From ->’Paris ’,
8 To->’Chicago ’,
9 Departure ->23,
10 Return ->30] },
11
12 post -> ${ ?R:Reservation [?X->?Y] }
13 },
14 gRule(R01):ForallRule -> ${
15 \if
16 ( %cheapestFlight (?P),(tripChoice (?fl_dep ,?fl_ret ,?P))

@WM )
17 \then (
18 %deltaInsert(${ trip:Trip[Dep ->?fl_dep ,Ret ->?fl_ret ]}) )

},
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19 gRule(R02):ForallRule -> ${
20 \if (
21 (?Q:QuestionByWS[
22 Name ->?X,
23 DateOfBirth ->?Y,
24 Gender ->?Z])@WM ,
25 (Name(?N),DateOfBirth (?DoB),Gender (?G))@WM
26 )
27 \then (
28 %deltaInsert(${answer:AnswerByGoal[
29 Name ->?N,
30 DateOfBirth ->?DoB ,
31 Gender ->?G]}) ) },
32 gRule(R03):ForallRule -> ${
33 \if (
34 (?Q:QuestionByWS[
35 CreditCardNo ->?X,
36 CreditCardHolder ->?Y,
37 CreditCardCVV ->?Z])@WM ,
38 (CreditCardNo (?CCN),
39 CreditCardHolder (?CCH),
40 CreditCardCVV (?CCCVV))@WM
41 )
42 \then (
43 %deltaInsert(${answer:AnswerByGoal[
44 CreditCardNo ->?CCN ,
45 CreditCardHolder ->?CCH ,
46 CreditCardCVV ->(?CCCVV)]}) ) }
47 ].

Listing 7.9: Web Service choreography specification for flight reservation (using
customized utility predicates)

1 FlightReservationService:WebService.
2 FlightReservationService[
3 importOntology -> ’../ Flight/WebServicesOntology.flr ’,
4 capability -> ${
5 pre -> ${ ?Req:RequestFlight [?X1 ->?Y1] },
6 post -> ${ (?Res:Reservation [?X2 ->?Y2]) }
7 },
8 wsRule(R01):ForallRule -> ${
9 \if (
10 (?R:RequestFlight[From ->?X,To ->?Y,Departure ->?Z,Return

->?W])@WM ,
11 (flight (?fl_dep ,?X,?Y,?Z,? priceDep))@WM ,
12 (flight (?fl_ret ,?Y,?X,?W,? priceRet))@WM ,
13 (%sum(?priceDep ,?priceRet ,? priceTot))
14 )
15 \then (
16 %deltaInsert(${tripChoice (?fl_dep ,?fl_ret ,? priceTot)}) )

},
17 wsRule(R02):ForallRule -> ${
18 \if
19 (?T:Trip[Dep ->?fl_dep ,Ret ->?fl_ret ])@WM
20 \then (
21 %deltaInsert(${question:QuestionByWS[
22 Name ->?X,
23 DateOfBirth ->?Y,
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24 Gender ->?Z]}) ) },
25 wsRule(R03):ForallRule -> ${
26 \if
27 (?A:AnswerByGoal[
28 Name ->?X,
29 DateOfBirth ->?Y,
30 Gender ->?Z])@WM
31 \then (
32 %deltaInsert(${question:QuestionByWS[
33 CreditCardNo ->?XX,
34 CreditCardHolder ->?YY,
35 CreditCardCVV ->?ZZ]}) ) },
36 wsRule(R04):ForallRule -> ${
37 \if
38 (?A:AnswerByGoal[
39 CreditCardNo ->?X,
40 CreditCardHolder ->?Y,
41 CreditCardCVV ->?Z])@WM
42 \then (
43 %deltaInsert(${validation:CreditCardValidation[
44 Number ->?X,Holder ->?Y,CVV ->?Z]})
45 )
46 },
47 wsRule(R05):ForallRule -> ${
48 \if (
49 (YesNoAnswer(’Yes ’))@WM ,
50 (trip:Trip[Dep ->?fl_dep ,Ret ->?fl_ret ])@WM
51 )
52 \then (
53 %deltaInsert(${reservation:Reservation[
54 Number ->11100,
55 Flight1 ->?fl_dep ,
56 Flight2 ->?fl_ret ]}) ) },
57 wsRule(Bank_R01):ForallRule -> ${
58 \if (
59 (?R:CreditCardValidation[
60 Number ->?X,
61 Holder ->?Y,
62 CVV ->?Z])@WM ,
63 (DB_CreditCard (?X,?Y,?Z))@WM
64 )
65 \then (
66 %deltaInsert(${YesNoAnswer(’Yes ’)})
67 )
68 }
69 ].
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Example 3: Shipwire example

Shipwire [5] is “a Fortune 100 company helping brands expand to new markets

all around the world with [its] technology platform and distribution centers in more

than 45 countries”. The company has authenticated open API facilities for develop-

ers. As a tutorial of working with APIs, Shipwire provides a scenario consisting of

step-by-step REST requests and responses showing how a developer can accomplish a

shipment order. This scenario is semi-choreographic (because it involves human spe-

cific behavior as well) and is described below:

1. The app checks stock availability of products and updates its catalog.

2. Audrey browses the catalog and picks items to fill her shopping cart.

3. When Audrey is ready, she proceeds to checkout, where she must select among

different shipment rates and services.

4. After Audrey confirms checkout, the app places a shipping order with Shipwire.

5. Audrey realizes her order is one item short, so she modifies the original order

and checks out again. The app updates the order with Shipwire.

6. Once Shipwire ships Audrey’s packages, the app automatically sends Audrey a

shipping confirmation email with her tracking number.

Here, we show how such choreography scenario can also be modeled by our

choreography specification (Listings 7.10 and 7.11). To make the presentation clearer,

we removed un-essential details; however, the original scenario can be modeled in full

in the same way.

Listing 7.10: Goal choreography specification for the Shipwire usecase
1 // Local ontology (will be stored on a separate file after

deployed)
2 /*
3 myUserName(’Audrey ’).
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4 myAuth(’TG9vayBhdCB0aGF0OyBEdWNrcy4uLm9uIGEgbGFrZSEK ’).
5 myAddress (’6501 Railroad Avenue SE-Room 315’).
6 WantToBuy(’Laura -s_Lament ’,10).
7 */
8 myGoal:Goal.
9 myGoal[
10 importOntology -> ’../ Shipwire/GoalsOntology.flr ’,
11
12 capability -> ${
13 pre -> ${
14 run:System[state ->on]
15 },
16 post -> ${
17 RESPONSE:MESSAGE[
18 PurchaseDone ->?_X,
19 TrackingNumber ->?_Y
20 ]
21 }
22 }
23 ,
24 gRule(R01):ForallRule -> ${
25 \if (
26 (
27 (\+ g_Rule:Control[R01 ->off])@WM ,
28 (run:System[state ->on])@WM ,
29 myUserName (?user)@WM ,
30 myAuth (?auth)@WM ,
31 WantToBuy (?sku ,?_quan)@WM
32 )
33 )
34 \then (
35 %deltaInsert(${g_Rule:Control[R01 ->off]}),
36 %deltaInsert(${REQUEST:MESSAGE[
37 TYPE ->’Search ’,
38 SKU ->?sku ,
39 USER ->?user ,
40 AUTH ->?auth
41 ]})
42 )
43 }
44 ,
45 gRule(R02):ForallRule -> ${
46 \if (
47 (
48 (\+ g_Rule:Control[R02 ->off])@WM ,
49 (RESPONSE:MESSAGE[
50 Available ->’TRUE ’,
51 ProductID ->?PrdId
52 ])@WM ,
53 myAuth (?auth)@WM ,
54 WantToBuy (?_prod ,?quan)@WM
55 )
56 )
57 \then (
58 %deltaInsert(${g_Rule:Control[R02 ->off]}),
59 %deltaInsert(${REQUEST:MESSAGE[
60 TYPE ->’Order ’,
61 ORDER ->?PrdId ,
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62 QUANTITY ->?quan ,
63 AUTH ->?auth
64 ]})
65 )
66 }
67 ,
68 gRule(R03):ForallRule -> ${
69 \if (
70 (
71 (\+ g_Rule:Control[R03 ->off])@WM ,
72 (RESPONSE:MESSAGE[
73 AcceptOrder ->’TRUE ’,
74 ProductID ->?PrdId
75 ])@WM ,
76 myAuth (?auth)@WM ,
77 WantToBuy (?_prod ,?quan)@WM
78 )
79 )
80 \then (
81 %deltaInsert(${g_Rule:Control[R03 ->off]}),
82 %deltaInsert(${REQUEST:MESSAGE[
83 TYPE ->’Checkout ’,
84 ORDER ->?PrdId ,
85 QUANTITY ->?quan ,
86 AUTH ->?auth
87 ]})
88 )
89 }
90 ,
91 gRule(R04):ForallRule -> ${
92 \if (
93 (
94 (\+ g_Rule:Control[R04 ->off])@WM ,
95 (RESPONSE:MESSAGE[
96 Question ->’ADDRESS ’
97 ])@WM ,
98 myAddress (?add)@WM
99 )
100 )
101 \then (
102 %deltaInsert(${g_Rule:Control[R04 ->off]}),
103 %deltaInsert(${REQUEST:MESSAGE[
104 TYPE ->’Answer ’,
105 Data ->?add
106 ]})
107 )
108 }
109
110 ].
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Listing 7.11: Web Service choreography specification for the Shipwire usecase
1 // Local ontology (will be stored on a separate file after

deployed)
2 /*
3 Product(’Laura -s_Lament ’,’1361533’,20).
4 User(’Audrey ’, ’TG9vayBhdCB0aGF0OyBEdWNrcy4uLm9uIGEgbGFrZSEK ’).
5 */
6
7 Shipwire:WebService.
8 Shipwire[
9 importOntology -> ’../ Shipwire/WebServicesOntology.flr ’,
10
11 capability -> ${
12 pre -> ${
13 REQUEST:MESSAGE [?_X1 ->?_Y1]
14 },
15
16 post -> ${
17 RESPONSE:MESSAGE [?_X2 ->?_Y2]
18 }
19 }
20 ,
21 wsRule(R01):ForallRule -> ${
22 \if (
23 (\+ ws_Rule:Control[R01 ->off])@WM ,
24 REQUEST:MESSAGE[
25 TYPE ->’Search ’,
26 SKU ->?sku ,
27 USER ->?user ,
28 AUTH ->?auth
29 ]@WM ,
30 User(?user , ?auth)@WM ,
31 Product (?sku ,?PrdId ,?_Quan)@WM
32 )
33 \then (
34 %deltaInsert(${ws_Rule:Control[R01 ->off]}),
35 %deltaInsert(${RESPONSE:MESSAGE[
36 Available ->’TRUE ’,
37 ProductID ->?PrdId
38 ]})
39 )
40 }
41 ,
42 wsRule(R02):ForallRule -> ${
43 \if (
44 (\+ ws_Rule:Control[R02 ->off])@WM ,
45 REQUEST:MESSAGE[
46 TYPE ->’Order ’,
47 ORDER ->?PrdId ,
48 QUANTITY ->?quanReq ,
49 AUTH ->?auth
50 ]@WM ,
51 Product (?_sku ,?PrdId ,?Quan)@WM ,
52 ?Quan >= ?quanReq
53 )
54 \then (
55 %deltaInsert(${ws_Rule:Control[R02 ->off]}),
56 %deltaInsert(${RESPONSE:MESSAGE[
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57 AcceptOrder ->’TRUE ’,
58 ProductID ->?PrdId
59 ]})
60 )
61 }
62 ,
63 wsRule(R03):ForallRule -> ${
64 \if (
65 (\+ ws_Rule:Control[R03 ->off])@WM ,
66 REQUEST:MESSAGE[
67 TYPE ->’Checkout ’,
68 ORDER ->?PrdId ,
69 QUANTITY ->10,
70 AUTH ->’

TG9vayBhdCB0aGF0OyBEdWNrcy4uLm9uIGEgbGFrZSEK ’
71 ]@WM
72 )
73 \then (
74 %deltaInsert(${ws_Rule:Control[R03 ->off]}),
75 %deltaInsert(${RESPONSE:MESSAGE[
76 Question ->’ADDRESS ’
77 ]})
78 )
79 }
80 ,
81 wsRule(R04):ForallRule -> ${
82 \if (
83 (\+ ws_Rule:Control[R04 ->off])@WM ,
84 REQUEST:MESSAGE[
85 TYPE ->’Answer ’,
86 Data ->?_address
87 ]@WM
88 )
89 \then (
90 %deltaInsert(${ws_Rule:Control[R04 ->off]}),
91 %deltaInsert(${RESPONSE:MESSAGE[
92 PurchaseDone ->’TRUE ’,
93 TrackingNumber - > ’1234567890 ’
94 ]})
95 )
96 }
97 ].

In this example, each rule can only be fired once. We enforce this restriction by

putting proper flags in the rules’ left-sides. If a rule gets fired, subsequent firing of

the same rule is prevented since the flag will be false after the first firing. Step 5 of

Shipware scenario denotes the situation where the user decides to change her/his mind.

Although such decisions are normally made by a human agent, they can also be mod-

eled by our specifications. For example, a predicate like UserChangeMind(’TRUE’)
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can be inserted as a pre-condition at the beginning and by using the above mentioned

flagging technique, we can give only one chance to the goal to update its choice. An-

other way is to define a random function that activates a proper condition, simulating

the user’s change of mind.
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Example 4: Using well-known vocabularies (schema.org)

Flora-2 inherently supports defining the membership relation. The frame A:C[B-

>1] means that object A is a member of class C and its B attribute has value 1. In gen-

eral, membership relation is defined by the : operator. This feature is very suitable to

link Flora-2 concepts to well-known vocabularies like the one available on schema.org.

For example, we can define the flight predicate used in the previous examples as an in-

stance of http://schema.org/Flight by flight:’http://schema.org/Flight’.

This relation can be stored in the common ontology and can be validated during the

choreography runs. Here we rewrite the authentication example with schema.org an-

notations. Table 7.3 shows the concepts which can be mapped to the current version of

schema.org vocabulary. Listings 7.12 and 7.13 show the authentication goal and Web

Service specifications respectively using the schema.org vocabulary.

Table 7.3: schema.org mapping
Concept schema.org type

QuestionByWS http://schema.org/Question
AnswerByGoal http://schema.org/Answer
myUserName http://schema.org/identifier
myPassword http://schema.org/accessCode
UserName http://schema.org/identifier
Password http://schema.org/accessCode
Message http://schema.org/Message
Goal http://schema.org/agent

WebService http://schema.org/Service

Listing 7.12: Goal choreography specification for semantic authentication
(schema.org annotated)

1 // Local ontology (will be stored on a separate file after
deployment)

2 /*
3 myUserName(’Riccardo ’).
4 myPassword (’98765’).
5 */
6 myGoal:Goal.
7 myGoal[
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8 importOntology -> ’../Auth/GoalsOntology.flr ’,
9
10 capability -> ${
11 pre -> ${
12 ar:AuthenticationRequest[UserName ->?UN, Password ->?PW],
13 AuthenticationRequest(UserName ,?UN),
14 AuthenticationRequest(Password ,?PW)
15 },
16
17 post -> ${
18 ?AV:AuthenticationValidation [?X->?Y] \or
19 AuthenticationValidation () \or
20 AuthenticationValidation (?Z) \or
21 AuthenticationValidation (?W,?S)
22 }
23 },
24 gRule(R01):ForallRule -> ${
25 \if (
26 ?X:QuestionByWS[UserName ->?Y]@WM ,
27 myUserName (?UN)@WM ,
28 QuestionByWS:’http :// schema.org/Question ’,
29 myUserName:’http :// schema.org/identifier ’
30 )
31 \then (
32 %deltaInsert(${A:AnswerByGoal[UserName ->?UN]})
33 )
34 },
35 gRule(R02):ForallRule -> ${
36 \if (
37 ?X:QuestionByWS[Password ->?Y]@WM ,
38 myPassword (?PW)@WM ,
39 QuestionByWS:’http :// schema.org/Question ’,
40 myPassword:’http :// schema.org/accessCode ’
41 )
42 \then (
43 %deltaInsert(${A:AnswerByGoal[Password ->?PW]})
44 )
45 },
46 gRule(R03):ForallRule -> ${
47 \if (
48 QuestionByWS(UserName ,?X)@WM ,
49 myUserName (?UN)@WM ,
50 QuestionByWS:’http :// schema.org/Question ’,
51 myUserName:’http :// schema.org/identifier ’
52 )
53 \then (
54 %deltaInsert(${AnswerByGoal(UserName ,?UN)})
55 )
56 },
57 gRule(R04):ForallRule -> ${
58 \if (
59 QuestionByWS(Password ,?X)@WM ,
60 myPassword (?PW)@WM ,
61 QuestionByWS:’http :// schema.org/Question ’,
62 myUserName:’http :// schema.org/identifier ’
63 )
64 \then (
65 %deltaInsert(${AnswerByGoal(Password ,?PW)})
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66 )
67 }].

Listing 7.13: Web Service choreography specification for semantic authentication
(schema.org annotated)

1 // Local ontology (will be stored on a separate file after
deployment)

2 /*
3 DB_UserName_Password(’PeterJM ’,’12345’).
4 DB_UserName_Password(’Angel83 ’,’112233’).
5 DB_UserName_Password(’Riccardo ’,’98765’).
6 DB_UserName_Password(’Agent007 ’,’7777777’).
7 */
8 AuthenticationService:WebService.
9 AuthenticationService[
10 importOntology -> ’../Auth/WebServicesOntology.flr ’,
11
12 capability -> ${
13 pre -> ${
14 ?AR:AuthenticationRequest [?X->?Y]
15 },
16
17 post -> ${
18 ?AV:AuthenticationValidation [?X->?Y]
19 }
20 },
21 wsRule(R01):ForallRule -> ${
22 \if (
23 (?AR:AuthenticationRequest [?X->?Y])@WM
24 )
25 \then (
26 %deltaInsert(${Q:QuestionByWS[UserName ->_]}),
27 %deltaInsert(${Q:QuestionByWS[Password ->_]})
28 )
29 },
30 wsRule(R02):ForallRule -> ${
31 \if (
32 (?X:AnswerByGoal[UserName ->?UN])@WM ,
33 (?Y:AnswerByGoal[Password ->?PW])@WM ,
34 DB_UserName_Password (?UN ,?PW)@WM ,
35 AnswerByGoal:’http :// schema.org/Answer ’,
36 UserName:’http :// schema.org/identifier ’,
37 Password:’http :// schema.org/accessCode ’
38 )
39 \then (
40 %deltaInsert(${av:AuthenticationValidation[
41 UserName ->?UN,
42 Password ->?PW]})
43 )
44 },
45 wsRule(R03):ForallRule -> ${
46 \if (
47 (?X:AnswerByGoal[UserName ->?UN])@WM ,
48 (?Y:AnswerByGoal[Password ->?PW])@WM ,
49 (\+ DB_UserName_Password (?UN ,?PW))@WM ,
50 AnswerByGoal:’http :// schema.org/Answer ’,
51 UserName:’http :// schema.org/identifier ’,
52 Password:’http :// schema.org/accessCode ’
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53 )
54 \then (
55 %deltaInsert(${M:Message[
56 WS->’Incorrect username or password .’]})
57 )
58 }
59 ].
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Example 5: HTTP messages

As mentioned before REST APIs are very popular. Here, we show how HTTP

messages can be encoded to Flora-2 choreography specifications. In Section 7, we

demonstrated a choreographic scenario provided by the Shipwire website [5]. We ab-

stractly showed how this scenario can be modeled with the choreography specification.

At a lower level, REST APIs are called in single step request/response pairs and be-

cause HTTP is a stateless protocol, control flow is managed at higher levels.

Here, we show how a sample REST request/response pair can be modeled by

the Flora-2 choreography specification. The sample GET request/response taken from

TIBCO ® API Exchange Gateway [6] and is shown below:

Request http://localhost:8090/tpmRest/v1/participants/

transports/all?participantName=partner1

&protocolName=EZComm

Response {"result":[{"name":"file","type":"FILE"},

{"name":"http","type":"HTTP"}]}

We use the JSON to Flora-2 conversion presented in Appendix C to specify the

JSON response provided by the Web Service. Listings 7.14 and 7.15 show the goal

and Web Service specifications. We use the attribute ID to make correlation between

the request and response messages.

Since there is only one request/response step, the request method can be also de-

fined in goal.pre. In this form, goal will be rule-free however.

Listing 7.14: Goal choreography specification for semantic GET request
1 myGoal:Goal.
2 myGoal[
3 importOntology -> ’../Tibco/GoalsOntology.flr ’,
4
5 capability -> ${
6 pre -> ${ run:System[state ->on] },
7 post -> ${
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8 RESPONSE:’HTTP_1 .1_MESSAGE ’[
9 ID ->123,
10 STATUS ->200,
11 BODY ->?format[content -> ?top(?topId)]
12 ]
13 }
14 }
15 ,
16 gRule(R01):ForallRule -> ${
17 \if (
18 (
19 (\+ g_Rule:Control[R01 ->off])@WM ,
20 (run:System[state ->on])@WM
21 )
22 )
23 \then (
24 %deltaInsert(${g_Rule:Control[R01 ->off]}),
25 %deltaInsert(${
26 REQUEST:’HTTP_1 .1_MESSAGE ’[
27 ID ->123,
28 METHOD ->’GET ’,
29 URI ->’http :// localhost :8090/ tpmRest/v1/
30 participants/transports/all ’,
31 PARAMS ->participantName(’partner1 ’),
32 PARAMS ->protocolName(’EZComm ’)
33 // , HEADER ->Accept(’text/json ’),
34 // BODY ->Optional
35 ]})
36 )
37 }
38 ].

Listing 7.15: Web Service choreography specification of semantic GET response
1 Tibco:WebService.
2 Tibco[
3 importOntology -> ’../Tibco/WebServicesOntology.flr ’,
4
5 capability -> ${
6 pre -> ${ REQUEST:’HTTP_1 .1_MESSAGE ’[?_X1 ->?_Y1] },
7
8 post -> ${ RESPONSE:’HTTP_1 .1_MESSAGE ’[?_X2 ->?_Y2] }
9 }
10 ,
11 wsRule(R01):ForallRule -> ${
12 \if (
13 (\+ ws_Rule:Control[R01 ->off])@WM ,
14 REQUEST:’HTTP_1 .1_MESSAGE ’[
15 ID ->?id,
16 METHOD ->’GET ’,
17 URI ->?uri ,
18 PARAMS ->?_param (?val)
19 // , HEADER ->Optional ,
20 // BODY ->Optional
21 ]@WM
22 // , call the appropriate function with
23 // the provided parameters
24 )
25 \then (
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26 %deltaInsert(${ws_Rule:Control[R01 ->off]}),
27 %deltaInsert(${RESPONSE:’HTTP_1 .1_MESSAGE ’[
28 ID ->?id,
29 STATUS ->200,
30 BODY ->json[content ->object(obj_01)],
31
32 object(obj_01 ,’result ’)-> array(arr_01),
33
34 array(arr_01 ,1) ->object(obj_02),
35
36 object(obj_02 ,’name ’) ->’file ’,
37 object(obj_02 ,’type ’) ->’FILE ’,
38
39 array(arr_01 ,2) ->object(obj_03),
40
41 object(obj_03 ,’name ’) ->’http ’,
42 object(obj_03 ,’type ’) ->’HTTP ’
43 ]})
44 )
45 }
46 ].
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Appendix G: The source code of timing evaluation and the output raw

data

Choreography specification generator (C#)

Listing 7.16: Choreography specification generator
1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using System.Text;
5 using System.IO;
6
7 namespace RuleGenerator
8 {
9 class Program
10 {
11 static StreamWriter srGoal = new StreamWriter ("./ Benchmarking

/Choreography/Bench/Goals.flr");
12 static StreamWriter srWS = new StreamWriter ("./ Benchmarking/

Choreography/Bench/WebServices.flr");
13
14 static void Main(string [] args)
15 {
16 WriteLineGoal (" myGoal:Goal.\r\nmyGoal [\r\n importOntology

-> \’C:/Users/ShAhin MPA/Desktop/Benchmarking/
Choreography/Bench/GoalsOntology.flr\’,\r\n");

17 WriteLineWS (" myService:WebService .\r\nmyService [\r\n
importOntology -> ’C:/Users/ShAhin MPA/Desktop/
Benchmarking/Choreography/Bench/WebServicesOntology.flr
’,\r\n");

18
19 int pre = 1;
20 int post = (args != null && args.Length > 0 ? Int32.Parse(

args [0]) : 10);
21
22 int i = pre;
23
24 WriteLineGoal (" capability -> ${pre -> ${obj:Concept[

attr_" + i + "->val_" + i + "]}, post -> ${obj:Concept[
attr_" + post + "->val_" + post + "]}} ,");

25 WriteLineWS (" ${pre -> ${?OBJ:Concept [?_X1 ->?_Y1]}, post
-> ${?OBJ:Concept [?_X2 ->?_Y2]}},");

26
27 for (i = pre; i < post; i++)
28 {
29 WriteLineWS (" wsRule(R" + i + "):ForallRule -> ${ \\if

(obj:Concept[attr_" + i + "->val_" + i + "]@WM) \\then
(% deltaInsert(${obj:Concept[attr_" + (i + 1) + "->

val_" + (i + 1) + "]})) }" + ((i < (post - 1)) ? "," :
""));

30 i++;
31 if (i >= (post - 1) )
32 {
33 break;
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34 }
35 WriteLineGoal (" gRule(R" + (i - 1) + "):ForallRule -> $

{ \\if (obj:Concept[attr_" + i + "->val_" + i + "]@WM)
\\then (% deltaInsert(${obj:Concept[attr_" + (i + 1) +
"->val_" + (i + 1) + "]})) }" + ((i < (post - 2)) ?

"," : ""));
36 }
37 WriteLineGoal(@"].");
38 WriteLineWS(@"].");
39 srGoal.Close();
40 srWS.Close();
41 }
42
43 static void WriteLineGoal(string str)
44 {
45 // Console.WriteLine(str);
46 srGoal.WriteLine(str);
47 }
48
49 static void WriteLineWS(string str)
50 {
51 // Console.WriteLine(str);
52 srWS.WriteLine(str);
53 }
54 }
55 }
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Changes to Choreography.flr

Here, the partial view of the file Choreography.flr (Listing 7.2) altered for

benchmarking is given. Lines 22 to 36 in Listing 7.2 are replaced with Lines 1 to 23 of

Listing 7.17 below.

The predicate %duration(?S2,?MS2,?S1,?MS1,?DS,?DMS) (Lines 29 to 33 of

the Listing 7.17 below) is added to the file Choreography.flr to compute the time

needed for the choreography engine to run the given specifications.

Listing 7.17: Partial view of Choreography.flr
1 /* (1) start*/
2 %start(?goal ,?WS) :-
3 %debug(on),
4 %initializations ,
5 %preProcessCheckings (?goal ,?WS),
6
7 %prepareModule(WM),
8 %prepareModule(DeltaWM),
9
10 %importOntology (?goal ,WM),
11 %importOntology (?WS,WM),
12
13 %insertGoalPre (?goal ,WM),
14
15 // Benchmarking
16 epoch_milliseconds (?S1 ,?MS1)@\prolog(machine),
17
18 %runChoreography (?goal ,?WS),
19
20 epoch_milliseconds (?S2 ,?MS2)@\prolog(machine),
21 %duration (?S2 ,?MS2 ,?S1 ,?MS1 ,?DS ,?DMS),
22 ?Filename = ’C:/Users/ShAhin MPA/Desktop/Benchmarking/

Choreography/Bench/out.txt ’, ?Filename[open(append ,? Stream)]
@\io, ?Stream[writeln ([?DS ,?DMS])]@\io, ?Stream[close]@\io.

23 //% watchln([’Duration:’-?DS -?DMS]).
24 /*---------------------------------------------------*/
25
26 /* Other predicates omitted */
27
28 // %duration (?X) returns the difference between two second -based

times
29 %duration (?S2 ,?MS2 ,?S1 ,?MS1 ,?DS ,?DMS) :-
30 ?DMS_temp \is ?MS2 - ?MS1 ,
31 \if (? DMS_temp < 0)
32 \then (?DS \is ?S2 - ?S1 - 1, ?DMS \is ?DMS_temp + 1000)
33 \else (?DS \is ?S2 - ?S1, ?DMS \is ?DMS_temp).
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The raw data for the experiments done in Chapter 6

Output of the code given in Listing 7.2 for the experiment done in Section 6.2 is

shown below. The numbers are written in the file out.txt; a sample snapshot of this file

is shown below in Figure 7.9. The first number (2) represents seconds and the second

number (528) represents milliseconds.

1st run 2nd run 3rd run
When number of rules is 10: [2, 528] [2, 621] [2, 558]
When number of rules is 20: [10, 717] [11, 466] [10, 702]
When number of rules is 30: [24, 897] [24, 711] [24, 274]
When number of rules is 40: [43, 150] [44, 585] [43, 446]
When number of rules is 50: [67, 501] [68, 322] [66, 971]

Output of the code given in Listing 7.2 for the experiment done in Section 6.3:

1st run 2nd run 3rd run
When number of rules is 10: [1, 389] [1, 393] [1, 342]
When number of rules is 20: [3, 420] [2, 995] [3, 730]
When number of rules is 30: [4, 914] [4, 992] [4, 961]
When number of rules is 40: [6, 921] [6, 958] [6, 880]
When number of rules is 50: [9, 204] [9, 173] [9, 469]

Output of the code given in Listing 7.2 for the experiment done in Section 6.4:

1st run 2nd run 3rd run
When # of terms in LHS and RHS is 1: [2, 528] [2, 621] [2, 558]
When # of terms in LHS and RHS is 2: [4, 870] [5, 268] [4, 968]
When # of terms in LHS and RHS is 4: [9, 128] [9, 379] [9, 411]
When # of terms in LHS and RHS is 8: [18, 135] [17, 816] [18, 450]

Figure 7.9: A snapshot of out.txt generated by the choreography engine
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